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Introduction

There is a multitude of research problems that an ecologist has to deal with. There is also a
multitude of approaches that can be used to evaluate the collected data. The traditional statistical
methods never addressed those problems in fully adequate way. That is why the methods like the
ordination methods flourished in the ecology much earlier than accepted by the 'official
statistical science. The time is changing and there are many new insights into appropriate ways of
visualizing and analyzing the ecological data and the methods allowing us to do that are coming
from various directions. In this thesis, I present a collection of papers covering some of my
research aimed at improving the use of these methods in the field of ecology or at their
application to the particular ecological research projects.

An important advance in the methods allowing us to get a global overview of the
relationships in our data, to summarize their properties and to create new hypotheses to be tested,
was the arrival of methods of the direct gradient analysis (ter Braak et Prentice 1988). These
methods combine the ordination analysis traditionally used in the ecological research with the
regression analysis approach and allow us to suggest more precise models of the relationship
between the organisms and their environment. Chapter 1 of my thesis makes an example of using
the methods of constrained gradient analysis as a framework for an exploration of research data.
The paper (which appeared in the Journal of Paleolimnology in 1994) also attempts to stress the
need to exhibit the high level of self-criticism when applying models standing behind the
ordination methods and check whether their particular use was an appropriate one.

The species response models models hypothesized using the results of the ordination
methods can be explored in more detail by the regression methods. Even in this area the recent
developments led to availability of new methods and many of the modemn regression methods are
much more appropriate for the application to the ecological data than the traditional linear
methods of regression analysis. Among those, the generalized additive models (Hastie et
Tibshirani, 1990) already achived attention among ecologist and have been found useful for
modelling species responses to the gradients of their environment. The manuscript of paper
presented in chapter 2 discusses the advantages and problems of using generalized additive
models for fitting the species - environment response models and also indicates possible
implications for enhancements of methods of constrained ordination methods.

The paper in chapter 3 (also in manuscript) provides a real-life example of using both
types of statistical methods (direct gradient analysis and regression methods) to help to arrive at
new findings in the ecological research.

Another example is provided in chaprer 4 which represents a single sub-chapter of the
book that was accepted for publishing and has to appear at SPB Publishers before end of year
1996 (Prach et al., 1996). This chapter written with two co-authors (K. Prach, O. Rauch) deals
with seasonal and inter-seasonal dynamics of Luznice river discharge and of the underground
water table. During the study of these processes several types of modern regression methods were
applied to arrive at realistic models.

Another chapter from the same book, presented in chapter 5 of my thesis, uses rather
different approach to modelling ecological processes. Here, a simulation model for the seasonal
dynamics of nutrients and energy flows and storage in a river-floodplain ecosystem is developed.
During the development of that model, a rather novel approach was used, with the architecture of
the simulation model structured around the rules-driven expert system. The selection of expert
system toolkit which employs the theory of fuzzy sets allowed me to integrate heuristic



knowledge about the ecosystem processes without the (unrealistic) need to estimate a huge array
of system parameters that would need to be determined if more classical approaches were used.

While the relationship between the methods of artificial intelligence (as presented in the
expert systems methodology) and the methods of constrained gradient analysis and regression
analysis might not be clearly seen by the reader, the chapter 6 of my thesis brings as an example
the manuscript of paper describing an expert system being developed and helping the ecologists
to manage the complexity of decisions needed when applying modern statistical methods to their
data sets.
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Abstract

This paper attempts to persuade the reader that methods of direct gradient analysis may serve as a basis for more
detailed exploration of the data and that these exploration methods can be also used for checking the appropriateness
of the assumptions of the applied ordination method. Generalized linear models and generalized loess smoothing

[ntroduction

The introduction of methods of direct gradient anal-
vsis (DGA) (sensu ter Braak & Prentice, 1988) into
ecological and paleolimnological research has marked
he onset of significant, new approaches for examining
':omplex data. The methods of DGA are an intuitive
-xtcnsmn of the traditional methods of indirect gra-
:hcnl analysis (such as principal components analysis
[PCA) or correspondence analysis (CA)) in the direc-
ion of more quantitative models of the processes that
nfluence the actual (semi)quantitative values we have

follected. The basic properties of these models are

similar to those of a linear regression model, but are
extended to include a whole set of dependent variables
0 be explained by a set of explanatory variables. In
aleolimnological applications of these methods, these
'xplanulory variables typically describe the limnologi-

ual environment. The dependent (in a statistical sense)

ariables are not measured entities, but are compos-
te gradients, similar to those revealed by ‘traditional’
rdination methods (like PCA) and are called ordi-
1ation axes. The program CANOCO, written by ter
raak (1987a), provides a powerful implementation
f all these techniques (including traditional indirect
radient analyses), With CANOCO, one can also test
e statistical significance of the relations revealed and
presented by the DGA results.

ogether with several ways of data presentation are used to explore a sample data set.

Another important feature of the way DGA meth-
ods were introduced into ecological research is the
emphasis placed on the appropriate visualization of
the ordination diagrams used to summarize the results
of these methods. However, at the time CANOCO was
released, there was no easy way to prepare appropri-
ately scaled ordination diagrams. To make the problem
worse, one often needs to prepare not only one, but
several diagrams, either because one needs to look at
the particular problem through its different facets or
because squeezing all the multidimensional informa-
tion into a single plot is incomprehensible. Also some
experimenting with the presentation of results is need-
ed if one wishes to present them in a concise, clear,
and elegant way.

These considerations were the primary reasons for
writing the program CanoDraw which began to be dis-
tributed with the CANOCO 3.1 package. Through fur-
ther use of the methods of DGA, I realized that these
methods are not only useful in their own right, but
they could (and should) provide a reasonable base for
exploring data by more detailed statistical and pre-
sentation methods. This is in good accordance with
the now widely accepted view of ordination methods
as tools to help in the formulation of new scientific
hypotheses (or in the modification of existing ones). It
is then very convenient if one can explore these new
hypotheses in the framework in which they arose. This
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could enhance and speed up the iterative process of
exploring one’s research data.

This is the direction that has influenced most of the
contents of the new version of the CanoDraw program
(version 3.0, released in 1993). In this paper, I present
a few of the methods of data exploration available in

CanoDraw.

Materials and methods

To demonstrate some of the capabilities of CanoDraw, I
use the data set described in Cumming et al. (1991)and
provided by H. J. B. Birks. In their paper, the authors
first investigated the relationship between the abun-
dances of scales of different chrysophyte species col-
lected from surface lake-sediments and the measured
values of several limnological variables. The data orig-
inated from a study of 25 Norwegian lakes and were
summarized using ‘canonical correspondence analy-
sis' (CCA) (ter Braak, 1986). The authors used the
‘forward selection’ option in the program CANOCO
(ter Braak, 1990) to select a subset of the measured
limnological variables that seems to influence signif-
icantly the species composition of the samples. They
then concentrated on the apparently most important
factor, namely lake-water acidity. The other variables
detected as having a significant explanatory role by
the forward selection test procedure were conductivity,
concentration of chloride anions (both these variables
are related to the second ordination axis and may rep-
resent some influence of proximity to the sea), concen-
tration of aluminium cations, and water colour. Based
on the strong relation of the chrysophyte taxa to water
acidity, the authors proceeded to model the values of
the lake-water acidity. using the composition of chrys-
ophyte assemblages recorded by their scales in lake
sediments.

CanoDraw could be used to prepare the basic
ordination plots, but it also provides methods for
2 more detailed exploration of the data. CanoDraw
implements ‘generalized linear models” (McCullagh
& Nelder 1989) for modelling the ‘responses’ (or
. “behaviour') of species, environmental variables, or
other characteristics (such as ‘fit of the species in the
ordination space’ or ‘sites diversity') along a partic-
-~ ular ordination axis or in the plane spanned by two
ordination axes. For a less parametric approach, Can-
oDraw also implements a modified version of the ‘loess
smoother’ (Cleveland, 1979). The CanoDraw’ imple-
mentation uses an extension employing locally weight-

CCA axls 2

2 : CCA axis 1
e : " = T +1.0

Fig. 1. Species — environmental variables biplot based on CCA
with the *significant’ environmental variables chosen by CANOCO's
forward-selection procedure. Environmental variables are plotied as
arrows, the species positions are marked with crosses. The position
of samples in the ordination plane is also plotied (filled circles), but
they are not labelled.

ed generalized linear models, instead of the original
locally weighted least squares regression. This allows
sensible smoothing to be applied to counts or to prob-
abilities. Another extension provided by CanoDraw is
the choice of the polynomial order of the fitted mod-
el. Beside a strictly linear model, models with second
or third order polynomial can be fitted, possibly with
interaction terms (of the X and Y co-ordinates) for the
response in the ordination plane. The choice of gen-
eralized linear models or generalized loess method is
complemented by a third choice, which is an imple-
mentation of the ‘universal kriging” model (Isaaks &
Srivastava, 1989).

When fitting the second-order polynomial form
of a generalized linear model for species abun-
dances/presences, CanoDraw provides estimates for
the optimum (i.e. the mode of the litted unimodal
curve), confidence intervals (if possible) and an esti-
mate of the species ‘tolerance’ (i.e. measure of the
width of the fitted response unimodal curve). These
estimates are provided for fitting species responsc
curves along an ordination axis, as well as along a
gradient of a particular environmental variable.

Motivation

The application of the weighted averaging calibration
procedure (and of the CCA method, too) centres around
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circles represent
transformed prior the analysis.

the assumption of the validity of the unimodal response
‘model (ter Braak, 1987b). It may be useful to remem-
'ber that this assumption does not imply that all the
spccics in the analysed data are assumed to have an
Pexact unimodal response. The linear response mod-
el where the expected value monotonically increases
Yor decreases along the gradient of an explanatory fac-
itor (ordination axis in case of CCA, pH values in the
fcase of the calibration problem) could be subsumed
linto the more general unimodal response model. Also,
wcighlr:d averaging methods are known to be extreme-
tly robust to the violation of the a priori assumptions of
the data properties. In any case, it might be worth look-
ling at the ordination results in the same way that the
methods of regression diagnostics (Cook & Weisberg,
[1982) look at the regression modelling results.

' Another component of the CCA method that is
worth investigating is the assumption that the ordina-
llion axes represent a sort of composite gradient along
fwhich the expected values of the explanatory vari-
fables change linearly (which is an assumption glob-
fally enforced by the definition of the ordination axes in
tCCA. being a ‘linear combination of the explanatory
ivariables’). Sull, we should check the extent to which
ithis assumption is fulfilled.

iResults and discussion

§Bcfore starting a more detailed investigation, it is use-
ful to recall the basic properties of the data. They can
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Fig. 2. Relation of lake-water acidity (pH) to the first CCA axis (2a} and of lake-water conduclivity to the second CCA axis (2b). Filled
individual sample values, the curve corresponds to the fitted first-order linear model. The original conductivily values were log

best be seen from the species — environmental biplot
based on the CCA results (Fig. 1). Note that only the
subset of explanatory variables selected in the forward
selection procedure was used in the analysis. The con-
tents of the figure and the method of its interpretation
is described in Cumming et al. (1991). More general
comments on the interpretation of ordination diagrams
can be found in Jongman et al. (1987).

From this diagram, we can clearly see that the main
gradient (the first ordination axis) corresponds clearly
with water acidity. CanoDraw allows us to check this
trend by plotting the pH values of individual samples
against their position on the ordination axis. Figure 2a
reveals the trend very clearly and the interpretability
of the second ordination axis in terms of the conduc-
tivity values is confirmed by Fig. 2b. Note, however,
that the conductivity is a compound variable, express-
ing synthetically the total concentration of ions in the
water. The curves displayed in Fig. 2 correspond to a
fitted linear model of the first order. Note, however,
that the trend in Fig. 2b may be better described by a
higher-order model. But the addition of a second-order
term did not reduce the residual sum of squares signifi-
cantly (CanoDraw provides the basic types of tests for
hierarchical model selection).

The recognition of the two main environmental
gradient influencing the species compasition in our
data allows us to provide an alternative view to the
ordination diagram. We can create a ‘reference plane’
spanned by the values of the two environmental vari-
ables. In case of our set of environmental (explanato-
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ry) variables including the most influential factors, we
could consider such space to be a representation of the
niche space of the species. The three species response-
surfaces presented in Fig. 3 represent various prefer-
ence types in this ‘niche space’. The response surface
is modelled using the generalized loess method, using
the locally weighted first-order generalized linear mod-
el assuming a Poisson distribution of the abundances.
Mallomonas allorgeillychenensis (Fig. 3a) shows pref-
erence for waters with high acidity and high conduc-
tivity. M. acaroides (Fig. 3b) prefers less acidic waters,
but again with a high conductivity. M. hindonii/canina
represents a taxon occurring in acid waters with a low
conductivity (Fig. 3c).

Another way we can represent the relationship of

L inleresting species to the most influential environmen-
1al variables is to project the abundances of the par-

ticular species onto the ordination plane, together with
the directions of the most rapid changes in the values

. of the environmental variables. This can be illustrat-
' ed for Mallomonas crassisquama in Fig. 4. General-

ized loess smoothing was used again. Although the

. species response surface is much less formalized here

than in the ordination diagram, the reader could still

t—

Copductlvity

pH value

Fig. 3. Response surface of the relative abundances of Mullomuonas
allorgeiflychenensis (3a), Mallmnonas acaroides (3b), and Mul-
lomonas canina/hindoni (3c) in the plane spanned by gradients of
pH and water conductivity. The surface is modelled by generalized
loess with a first-order model. The contours represent the relative
abundances of the species.

(=} Canductivity

L.

CCA axls 2
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Fip. 4. Response surface of the relative abundances of Mullomonas
crassisquenna in the ordination plane spanncd by the first two CCA
axes. The surface is modeled with peneralized foess procedure using
a second-order model (including an interaction lerm). The contours
represent the relative abundances of the species. The dotted segments
of the contour lines represent extrapolated parts that are much less
reliable. The arrows represent directions of the greatest increase in
values of the corresponding environmental variable.

wonder whether the real pattern has been removed by
the data-smoothing method. But by looking at the so-
called symbol plot (Fig. 5) for the same species, we can
clearly see that the trend visible in Fig. 4 has support
in the actual data. In Fig. 5 the real abundances are
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Tuble 1. Weighted averaging and maximum-likelihood estimates of optimum
and tolerance of studied chrysophyte species along the gradient of water acidity
Species Name pH-WA pH-WA pH-ML pH-ML
optimum  tolerance  optimum  tolerance
Mallumanas ucaroides 5,97 0.50 LINEAR —
M. akrokomaos 51 0.98 N.S.
M. allorgei/lychenensis 4,73 0.23 4.59 0.35
M. canina/hindoni 5.16 0.44 N.S. —
M. cuudata 552 0.6] N.S. —
M. crussisquama 6.00 0.57 LINEAR —
M. elungata 5.91 0.47 N.S. —_—
M. hamara 517 0.51 5.20 0.61
| M. heterusping 6.55 0.21 LINEAR —
i' M. pugio 4.56 0.19 LINEAR —
; M. puncrifera 592 0.46 N.S. =
i M. "small’ 5.41 0.58 LINEAR —
Synura echinulata 5.32 0.77 N.S. —
S. lapponica 5.83 0.61 LINEAR —
S. sphagnicola 487 0.45 1.07 1.65
Chrysodidymus 5.07 0.62 LINEAR —
synuroideus
io. e Conductivity S :
gk s 5
E It | .
- o : o
e .
° :
o i
] o o
.............................................. -'0
. o o
d ) o -
s :
; 4 -0 =
foag . ] e 0
78.8 .
e . ol f
e CCAaxis 5y CCA axis 1
-1%0 G -1.0° T T T T T T )

Fig. 5 Symbol plot of the relative abundances of Mallomones cras-
fyuamu in the ordination plane spanned by the first two CCA axes.
€ s12c of the circle gives a visual idea of the relative abundance of
Specics in a panticular sample, while the labels specify the exact

‘Walue The arrows represent directions of the greatest increase in the

alues of the carresponding variable,

: lisplayed with the size of the filled circle proportional

Fig. 6. Position of sites in the ordination plane spanned by the first
two CCA axes. The samples are classified according their pH value
into those having a value below the median pH (filled circles) and
those having their value above the median (empty circles).

to the abundance value. Unlabelled marks represent
absence of the species.

Another method of representing the relation of a
species to a particular gradient is to classify the samples
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according to their values for the studied variable (pH
value in our case). CanoDraw allows one to split the
samples into several distinct classes using the values
ofdnwrpaﬂkuhrcnvhonnwnmjvaﬁaMeorpanku-
lar species. It is possible to choose one of ten possible
strategics for using the values to split the set of sam-
ples. In this particular case I could have decided to
sthlhcdatainu>n~o(neaﬁy)equalgroups,ic.those
fibelow and those above the median pH value. In Fig. 6,
#the resulting classification of samples is plotted into
flthe ordination plane spanned by the first two ordina-
tion axes. The filled circles represent the ‘more acid
fhalf' of the data set. However, to achieve more visu-
ally informative plots, I split the samples according
#10 pH values into five groups of the same size (i.e. 5
Esamples in cach class). Then I could display the mean
fabundance for a particular species in these five class-
Hes, lincarly arranged. From the five methods available
for doing this in CanoDraw. histograms seemed to be
most appropriate. Figure 7 displays three species rep-
resenting three basic types of species relationship to
the acidity gradient.

This could also be summearized in one plot, display-
ing the fitted response curves (of the second order) for
the three species along the pH gradient (Fig. 8).
Beside visual checks of the reliability of the patterns
indicated by the ordination results, we could check our
assumption in a more formal way. One way is based

90

Mean Abundance [%]

90

Mean Abundance [%]

High p!

Low pH

Fig. 7. Mean abundances of Mallomonas crassisquama (7a), M
lomonas hamata (7b), and Mallomenas allorgei/lychenensis (7c)
five sample classes. The classes are defined by the pH value of t
samples (lakes) and they are ordered from the most acid 1o the le:
acid.
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Software av ailability

Program CanoDraw, version 3.0 is available from
Microcomputer POWer, 111 Clover Lane, Ithaca, NY
14850 — 4930, US.A; U+ 1-607-272-2188, fax.
+1-607-272-0782. Educational/site licenses are also
available. CanoDraw can be run on IBM-PC compati-
ble computer with 180286 microprocessor or higher. A
VGA graphics card and mouse are needed.
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Chapter 2

Modelling species - environment response curves: can we do better?
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Infroduction

Statistical models for responses of plant or animal species to the important environme}ltal
gradients are an important tool for expresing and summarizing our knowledge on the b?hav1our
of these species in their environment (Whittaker 1967, Austin et Gaywood 1?94). While these
regression models are used for a rather long time, only recently a more systematic appr.ojach to the
modelling was suggested in Huisman, OIff, Fresco (1993). Given the fact that the tradltl(.)nal way
of describing the relationship between species performance and the properties of the environment
(namely by a linear regression model) is often too crude an oversimplification to be useful, new
methods are sought that might be better suitable for that purpose.

The first logical step is to get rid of the unrealistic assumptions about the properties of the
response variable (predicted performance of the population or predicted probability of occurrence
of the species given particular environmental conditions): the counts of individuals, cover of the
uboveground biomass, expected competitiveness indices or probability of occurrence have
properties far from those assumed by the methods of statistical inference applied to the fitted
lincar models (Jongman, ter Braak, van Tongeren 1987). While ecologists analyzing such kind of
data always had some sort of transformations available, their use is not always as intuitive and
casy to do as one might like it to be. The generalized linear models (GLM, McCullagh et Nelder
1989) relicve us of this burden while holding some of the important, simplifying assumptions of
the classical lincar model (additivity of the influence of the explanatory variables, linearity of the
regression model in its parameters, simple relationship between the predicted values and the
expected variability of the predictions). The GLM already found their place in statistical analyses
of ccological data (e.g. ter Braak et Looman 1986, Austin et al. 1994, Ferrer-Castan et al. 1995).

Further step towards the more faithful (and also more complex) models is represented by
the generalized additive models (GAM, Hastie et Tibshirani 1990). The use of GAM in plant
¢cology for modelling species responses to their environment was already suggested by Yee et
Mitchell (1991) and by Leathwick (1 995). These models have an appeal to everyone who tried to
use the more simplistic statistical models to describe the relationships emerging from his/her data
and failed: in many cases the GAM do not fail on the same data. I have participated in several

rescarch projects where both GLM and GAM were successfully applied and provided new
insights into the data, In this

paper, I would like to: (a) discuss some motivations for applying
GAM instead of the (general;

zed) linear regression models, (b) provide warning about the new
traps that emerge hand in hand with the ne

Improvements 1o the application of thes
interesting relations between se
GAM) and multjv

w freedom provided by these models, (c) suggest some

e models to the ecological data, and (d) show some

mi-parametric modelling approach (as exercised by the use of
ariate statistical methods (ordination methods).




Short exposure to GAM

Generalized additive models (GAM) can be viewed as a natural, less-parametric extension of the
generalized linear models (GLM). But, let us start from the classical linear model. For simplicity,
] will suppose we have one response (“dependent") variable Y, representing in some way the
performance of the species, and we have two explanatory variables X1 and X2 influencing the
species performance. The generalization for more explanatory variables is then easy to derive.
The classical linear regression model describes the values of the response variable Y as
realizations of random variate with a Normal distribution with the same (constant) variance for
all the realizations (observations) and with the expected (mean) value for a particular
combination of the values of the explanatory variables expressed as follows:

EY =Pg + p1*X1 +p*X2 (1)

Generalized linear models generalize the classical linear model in two respects:

(a) the type of the statistical distribution the response variable is supposed to come from any of
the so-called exponential family of distributions. The most typical members of this family are the
Poisson distribution for counts, gamma distribution for biomass or the binomial distribution
relating to the probability of occurrence. The Gaussian distribution is one possible case, too. The
important consequence of this generalization is that the variability of the response variable values
i8 no longer constant: it is supposed to change in a systematic manner with the expected value of
the postulated distribution. For example with Poisson distribution the variance is supposed to be
equal to the expected value ("mean") of the response variable.

(b) while the GLM still maintain the linearity and additivity of the influence of individual
predictors (explanatory variables), these hold only on the scale of the linear predictor. For our
example, the linear predictor might be defined as:

N=Po+Br*X1 +pr*X2 )
This specification is in GLM complemented by the choice of link function, which relates the
expected value of the response variable to the linear predictor:

N =g(EY) 3)

The link function (") is a simple monotonic function that transforms the values onto the scale of
linear predictor (generally any real value) from the restricted scale of the response variable
(values in the range 0 to 1 for probability of occurrence, positive values for biomass, non-
negative values for counts etc.). These link functions will look very familiar to the practitioners
who used the more traditional transformation methods, e.g. logarithmic link function for counts.

) 1 - ) ; e

must be stressed. however, that in the GLM the transformations like logarithmic one do refer to
€Xpected values, not 1o the observed data.
r\ppmnching finally the

1 generalized additive models, [ must start from the fact that these are a

ogical extens; oo ; . o :
gical extension of GLM, differing only in the more flexible specification of the systematic part
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of the model, namely linear predictor of GLM. This one is called additive predictor here and its

speciﬁcation is written in the form

n=po + f1(X1) + f(X2) 4)

: where fi(.) are some smooth, semi-parametric curves, of different shape for different explanatory
' variables. Note that a GLM for our example is just a special case with f](x) = p1*X and

. [H(x) = Bp*X2. The property of additivity in the GLM and in the classical linear models is
r;lained (on the scale of the additive predictor), so we can visualize a fitted model by displaying
the individual fitted functions fj(.) of each of the predictors. One important consequence
emerging from the extra freedom in modelling the contribution of individual explanatory
- variables is that we can select for a particular predictor from various functions differing in their
' complexity. Clearly, we cannot select the one fitting "best" our data sample: we would invariably
cnd up with functions interpolating our data points but doing little for the generalization of their
patterns or for prediction of new values. The complexity of the curve can be expressed in the
terms of the degrees of freedom taken from our data by the model term corresponding to a
particular explanatory variable (Hastie et Tibshirani, 1990). There are various model selection
strategics known for the classical linear regression models. All of these are in principle available
in GAM, as well. A complication is that when working with GAM, we should find out not only
which predictors enter the final model but also what amount of information these should
convey in the model. Beside the complexity of the function f; used for a particular predictor,
a further problem we need to address is what type of smoother should be considered.
Nevertheless, this problem does not seem to be as essential as the previous ones: because the data
'drive’ the sclection of the appropriate shape of fi, the resulting curves are rather similar for the
types of smoothers commonly used with the GAM (most often smoothing cubic spline - Eubank,
1988 or the loess smoother - Cleveland, 1979).

Advantage of GAM

I. The most important feature that makes GAM different from the linear models is their localized
behaviour: Fig. 1 shows an example of fitting ecological response model describing the
dependence of the relative frequency of grasses (pollen type Gramineae) in a pollen sample from
An area ‘with particular amount of precipitation (non-published data, from H.J.B. Birks). Two
models were fitted 10 the data, each of them with the same amount of complexity (two degrees of
r"ft—‘dfi)I!\) in the mode] term corresponding to the rainfall amount: the thin line displays a GLM
\'\'lth'sccond-order polynomial dependency of Gramineae occurrence on the rainfall. The thick
line is n GAM, with cubic smoothing spline with two degrees of freedom. We can see that the

Parametric r.nodel follows a predetermined bel] shape, while the GAM describes more faithfully
the data, with ap increase of

fraction levelling of (or slightly

occurrence for precipitation up to 1500 mm and then with the
decreasing).




xxrkxix Fioyre 1 about here %% %%k

Similarly, GAM with the equivalent complexity are much beuer. at describing unimodal
responses in the case where the response shapes are not symmetric around the Optirrfa. In
summary, the models like the GAM (but not only these) do nlot expos‘;e us to the 'undesuable
consequences of linearity in the traditional regression mo.de]s. Llne.arity in X'further implies thjat
the extent of response of a species performance to an unit change in the environmental factor is
still the same (or that the response changes in a monotone way for the models involving
wransformations) whatever position on the environmental gradient we consider.

2. Another neat consequence of having a semi-parametric model plugged into GAM is the more
rcasonable way we can extend them to model interactions among the factors. Ecological factors
often do not exhibit interaction over the whole range of their gradient (availability of various
nutrients or elements or food resources) or differ in the extent (or form) of their interaction for
different parts of the gradients (interactions among nutrients availability and water availability).
This is too complicated for an appropriate description using the (generalized) linear models. Of
course, modelling interactions among factors directly is always quite difficult task and ope of the
main strengths of the GAMs is that the complexity of the non-parametric description of patterns
i8 limited by their assumption of additivity (on the additive predictor scale) of influence of
individual factors (explanatory variables).

3, The last advantage of GAM I need to mention lays in the similarity and continuity of their
Philosophy with the more traditional approaches, namely GLM. As the GLM are Just a special
case of GAM, we can include the GLM as the ultimately simple solution on our quest of faithful
but parsimonious model. The Occam's Razor principle asks us here to pick up the simplest model
suitable for our purpose. For model selection based on statistical inference, methods similar to
these used to compare competing linear models (usually hierarchically arranged) are available for
GAMs as well (sclection based on analysis of deviance - McCullagh et Nelder, 1989, p. 35).

Problems with GAM

The most difficult problem I have faced when working with GAM relates to model selection:
mare freedom means more danger of getting off the right track. There have been several methods
fuggested for dealing with the problem of model selection - these similar to the stepwise

selection approaches of classical regression analysis are still available (Hastie et Tibshirani, 1990,
P. 260). The search space w

model is much more comp]
explanatory variable ip the m
by the panticular v

here the (semi-)automated selection precedure has to look for the
ex, however. We have to consider no: only the presence of the
odel, but also the complexity of descripzion brought into the model

ariate. For €Xample, the model terms considered “or 4 particular explanatory
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variable might include its absence, linear form (as part of GLM), smooth term with 2 degrees of
freedom and smooth term with 4 degrees of freedom. But in reality, we should not be restricted to
integral number of degrees of freedom: a smooth curve with 2 degrees of freedom might be
oversmoothed (not following sufficiently the trends in the data), while the curve with 3 degrees
of freedom is already undersmoothed (too "wiggled").

Beside the problem with the complex search space for the model, the stepwise selection
procedures often tend to select too complicated models. For classical regression models, model
selection measures were devised that weight the extent the model fits the data against its
complexity. The best known is the Mallow's criterion (Cp - Mallow, 1973). This criterion has a
peneralization for the case of GLM (Akaike information criterion, AIC) and this one might be
;pplied with approximate validity during the selection of GAM as well (Hastie et Tibshirani,
1990, p. 158).

An alternative (and more appropriate) way of selecting model is to minimize the
prediction error, 1.e. to optimize the model performance in respect to the new, not yet collected
observations. This is very appealing and intuitive approach for modelling species responses along
cnvironmental factors. The so called cross-validation approach attempts to estimate the true
prediction error for a particular model by repeatedly dividing the data set into one part used for
fitting the model and the other part used for evaluating the model performance. The commonly
applied type of cross-validation is the one-leave-out type, where in each iteration single
observation is omitted from the data set, the remaining observations.are used to fit the model and
the performance of the model (using for example the squared difference between the true and
predicted value of the response variable) is evaluated using that single observation (Efron et
Tibshirani, 1993). It turns out that under certain assumptions the model selection statistics like
Mallow's Cp or AIC approximate the results obtained by the one-leave-out cross-validation
method (Stone, 1977).

When working with various types of data sets, fitting response curves and surfaces for
different types of organisms and different types of environmental factors, I have found that the
model selection using the AIC - based procedure often leads to ‘over-complicated' model
specifications, where the visualized responses of the species performance to the environmental
gradients are 100 difficult to generalize and interpret. The literature about this topic is scarce, but
published rescarch papers (Shao 1993, Shao et Wu 1989) indicate that the problem lays in the

Anherent similarity of the Cp or AIC statistics to the prediction error estimate based on the one-

leave-out cross-validation. These papers suggest that a raise of the fraction left out from the
training sample' makes the estimated prediction error less biased towards the over-complicated
model specifications (Shao 1993).
" I have been experimenting with the cross-validation procedures and found that the models
1 c o . 3 . *: T 1
d on the k-leave out cross-validated residual deviance are more parsimonious and almost

alwa,\"s Interpretable if compared with the models selected by other methods. I have been
applying the procedure w

here the data set is randomly splitted into two halves, one being used for
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model fit and the other for the mode] evaluation. Models selected in that way often suggest only
simple linear relationship, while the models selected using stepwise selection procedure based on

a deviance analysis indicate more complicated response curve.

Suggestion for use of GAM

For modelling response curves (i.e. in the situation where a single environmental factor is
considered) the following schema is suggested:
1. The average predictive squared error (PSE, Hastie et Tibshirani, 1990, p. 42) is approximated
using the cross-validated deviance (which is a generalization of the usual cross-validated sum of
squares for the more general notion of model deviance - see Nelder, McCullagh, 1989) and
evaluated for a series of model differing in the type and complexity of the explanatory variable
entering the model.
2. I have found that GAM based on smooth curves with more than 5 degrees of freedom are often
too complicated for ecological interpretation of their shape or (alternatively) differ from those
with lower complexity in too subtle (not interpretable) ways. Most often, I have been evaluating
the PSE of the model, considering the candidate specifications for the explanatory variable given
in Table 1.

The inclusion of the X+X2 term (describing parametric, second-order polynomial

dependence) is sometimes questionable and largely depends on the context and purpose of the

study. In many situations, the smooth term with the same amount of complexity (i.e. with two

degrees of freedom) provides a better fit to the data.

3. Each of the candidate models is evaluated several times by creating independent random splits,
because the &-Icave-out cross-validation tends to produce estimates of PSE of increasing variance
as the k increascs up to /2, which is the value suggested here and elsewhere (Shao, 1993) The
variance of the estimates increases with the term complexity, too. The model with the minimum
average estimate of PSE is then selected and fitted to the whole data set.

LREEEEEE S Table 1 about here o ok % ok ok sk ok sk ok ok

If we want to define a response surface (where more environmental factors are involved)

we should not base our model selection on marginal performance of the individual model terms.
The environmental factors often exhibit high degree of relatedness - a phenomenon which in the
context of GAM was named concurvity, a parallel to the traditional term of collinearity (Hastie
¢t Tibshirani, 1990, p. 123). As the reader mi
"best” model are usually

ght expect, the model terms selected jointly into the

less complicated if compared with their specification when the factors
are considered individually,

environmental factors consid

because they share some part of their information. With more

ered jointly in the fitting of species response surface, another
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problem emerges and that is whether to explicitly model any interaction terms and how to
appropriately eXpress such interaction. This area is rather unexplored even in the statistical
literature (Hastie et Tibshirani, 1990, p. 264), the more then in its application in ecology. In fact,
ecologists have a different understanding to the term 'interaction’, namely interaction among them
in their effects on a response variable. Using this view, the interaction between various ecological
factors entering our model of the response surface might emerge from a comparison of the

marginal response Curves (where each of the environmental factors is used separately) with their

shape in the joint GAM.

Response models and multivariate methods

Modelling the response of species to environmental gradients using GAM leads to an important,
conceptual problem that the ecologist using these models has to tackle: Shall we adopt such
scaling of the environmental factor that makes the data fit our simple conceptual model (like
symmetric unimodal response curve) in the best way or is it better to stay with the original scale
of measurement (pH values, nutrient concentrations in mg.g‘3 etc.)? This problem was already
discussed for example by @kland (1986) for modelling community composition response to the
environmental gradients. @kland suggested to accept the scale of the ordination axes of DCA
(Detrended Correspondence Analysis) method because this scale fits best the response of
individual species with the symmetric unimodal response curve, underlying the DCA method (ter
Braak, 1985).

The same question has to be answered for the univariate response models where a single
environmental factor takes the role of the composite gradients represented by the ordination axes.
Both problems mix together in the case of the direct gradient analysis (sensu ter Braak et
Prentice, 1988). For example, in the CCA (Canonical Correspondence Analysis, ter Braak et
Prentice, 1988) the unimodal responses of species along the gradients represented by the
ordination axes are assumed, but the ordination axes are further restricted to be a linear
combination of the explanatory variables (environmental factors, most often) - see Carlton (1990)
for an example of using CCA analysis solution as a basis for modelling species responses.

Consequently, we would profit enormously from the situation where scale of the
individual environmental factors would lead to constrained ordination axes that fulfil best the
assumption of unimodal responses of species along these gradients. In other words, restricting the
CCA axes 10 be a linear combination of submitted environmental variables expressed on ad hoc
scales often leads 1o sub-optimal ordination results. Technically, an improvement might be
achieved by an iterative procedure, where:

1. The environmental variables are used on their original scale in a CCA.
2. A semi-parametric (GAM:-like) transformation of these environmental variables at their current .

scale is d . ; . ) . o ) P
Olne, to linearize their relation with the current first (few) ordination axis (axes): A~
s R T .

#
R | ¥t
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suitable method for doing that is provided by AVAS (Additivity and VAriance Stabilization,

i Tibshirani, 1988).

3. The transformed environmental factors are used for a new CCA and steps 2 and 3 are repeated
until convergence is achieved (signified by the semi-parametric transformation suggested for all
the variables being near to linear). The experiments done so far showed that the convergence
happens almost instantly (in 2 - 3 iterations) and the suggested transformations are most often

easy to interpret (e.g. transformation similar to log transformation for the age of stands when

. modelling changes in plant communities during succession).

This is an area of further research, but results achieved so far are promising.

References

M. P. Austin et M. J. Gaywood (1994): Current problems of environmental gradients and
species response curves in relation to continuum theory. - J. Veg. Sci., 5: 473 - 482

M. P. Austin et al. (1994): Determining species response functions to an environmental
gradient by means of a B-function. - J. Veg. Sci., 5: 215 - 228

T. J. Carleton (1990): Variation in terricolous bryophytes and macrolichen vegetation along
primary gradients in Canadian boreal forests. - J. Veg. Sci., 1: 585 - 594

W. S. Cleveland (1979): Robust locally weighted regression and smoothing scatterplots. - J.
Am. Stat. Assoc., 74: 829 - 836

B. Efron, R. J. Tibshirani (1993): An Introduction to the Bootstrap. - Chapman and Hall, N.
York

D. Ferrer-Castan et al. (1995): On the use of three performance measures for fitting species
response curves, - I. Veg. Sci., 6: 57 - 62

T. J. Hastie, R. J. Tibshirani (1990): Generalized Additive Models. - Chapman and Hall,
London

J. Huisman, H. OIff, L. F. M. Fresco (1993): A hierarchical set of models for species response
analysis. - 1. Veg. Sci., 4: 37 - 46

1. R. Leathwick (1995): Climatic relationships of some New Zealand forest tree species. - J.
Veg, Sci., 6: 237 - 248

P. McCullagh, J. A. Nelder (1989): Generalized Linear Models. Second Edition. - Chapman
and Hall, London

R. H. Okland (1986): Rescaling of ecological gradients. II. The effect of scale on symmetry of
Species response curves. - Nord. J. Bot., 6: 661- 669

49: Shao (1993): Linear model selection by cross-validation. - J. Am. Stat. Assoc., 88: 486 -

J. Shao, C. F. J. Wu (1989
of Statistics, 17 1176 - 1197

): A general theory for jackknife variance estimation. - The Annals




C. 1. F. ter Braak (1985): Correspondence analysis of incidence and abundance data:

roperties in terms of a unimodal response model. - Biometrics, 41: 859 - 873

C. J. F. ter Braak, C. W. N. Looman (1986): Weighted averaging, logistic regression and the

Jaussian response model. - Vegetation, 65: 3 - 11
C. J. F. ter Braak, [ C. Prentice (1988): A theory of gradient analysis. - Advances in

Ecological Research, 18:271 - 317
R. ]. Tibshirani (1988): Estimating transformation for regression via Additivity and Variance

Stabilization. - J. Am. Stat. Assoc., 83: 394 - 405
T. W. Yee, N. D. Mitchell (1991): Generalized additive models in plant ecology. - J. Veg.

Sci., 2: 587 - 602




0 null model, the response variable is not expected to change with the values

of the predictor)

b4 response curve is a GLM

X+X2 response as a second-order polynomial in a GLM
m GAM with smooth term with 2 degrees of freedom (d.f.)

s(X.df=3) | GAM with smooth term with 3 d.f.

s(X,df=4) GAM with smooth term with 4 d.f.

s(X,df=5) GAM with smooth term with 5 d.f.

Table 1 The considered terms for a generalized additive model when selecting model using the
| |-leave-out cross-validation. Fit more predictors in the model, all combinations of their
+ corresponding terms of various complexity should be tried when looking for the "best" model

| specification.

Captions:

| Figure 1 Dependency of relative frequency of pollen type Gramineae in a pollen sample on the
§ .mount of rainfall (based on unpublished data of John Birks). The fitted second-order polynomial

| peneralized linear model is displayed with the thin solid line. The fitted generalized additive
| models of the same complexity (with two degrees of freedom) is displayed by the thick solid line.
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Small-scale heterogeneity in plant cover: can be explained? l
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Petr Smilauer: Small-scale heterogeneity in plant cover: can be explained?

Abstract

The spatial heterogeneity of the soil nutrients available for plants was measured in a grid of soil
samples, each taken from the area of 16 cm2. The plants rooting in individual samples were

{ ‘ccorded on semi-quantitative scale. A significant relation between availability of water-soluble
| phosphorus and plant cover composition was found and explored by statistical methods. While

the causality of the dependencies found in this observational study cannot be determined, the
clear relation of patches with relatively higher nutrients content to the dominance of Poa

b angustifolia is apparent.

Introduction

As part of my research on the role of root systems in the maintainance of spatial heterogeneity

i and biodiversity in grassland communities, I have started a field experiment exploring the
| influcnce of endomycorrhizal symbiosis on the plant community spatial structure and its
| interaction with the nutrients availability. A supplementary observational study was performed to
| asscss the natural levels of nutrients availability at the study site, their spatial distribution and its

§ possible relations with the small-scale heterogeneity in plant cover. This supplementary study
| revealed some interesting results that are presented in this paper.

The study was expected to provide some support data for the a priory hypothesis that part

 of the high spatial heterogeneity in the small-scale distribution of plant populations in the studied
' grassland can be explained by the corresponding heterogeneity (patchiness) in the soil nutrient

resources. Different species have different ability to explore the soil volume for the nutrients and

i in many types of plant communities (including temperate grasslands) this differential ability
! might be substantially influenced by the extent of endomycorrhizal symbiosis the individual
§ species exhibit (Koide 1991). Nevertheless, the spatial heterogeneity in the soil resource might

cnable plants with different strategies for soil-volume exploration and nutrients acquistion to

¥ cocxist (c.g. Fitter 1982).

It 1s very difficult, if not impossible, to say to which extent the position of individual

_ planls.is influenced by the soil nutrients heterogeneity and in what extent the causality goes in the
| opposite direction (i.e. the dynamics of aboveground and belowground biomass creating the

petchiness in soil nutrient resource). Despite of that, there was some interest in this problem (e.g.

] Juckson et Caldwell 1993, Hook et al 1991). From the point of view of my study, the studies
| reported by those authors tackled the problem on too gross spatial scale (e.g. the scale of 12.5 cm

in the study of Jackson et Caldwell) and in the type of vegetation having more simplistic spatial

| structure than is that of the type of grassland studied here.

Study site and methods

sne.xs Iogaled near the village Zvikov, approx. 10 km E from the Ceske Budejovice,

1827 ( Stag?lil‘li‘ Itisan 2lig0tr0phﬁc meadow, being managed in a traditional way at least since

e 1 Katastr 1827). Even in the 1827, the grassland is reported as nutrient poor, stony
» DEINg cut at most once a year. The meadow is positioned at the slope of a small brook,

& :
| Plant species nomenclature according Rothmaler 1976




formed by its sandy banks. At present, the upper margin of the meadow is somf?what influenced
by the wash-out of the nutrients from the adjacent arable field (with larger dominance of
Alopecurus pratensis, Deschampsia cespitosa, Dactylis glomerata), b-ut the central part (where
this study was done) is still species rich with the most important species being Poa angustifolia,
Festuca rubra, Avenochloa pubescens, Nardus stricta, Luzula campestris, Plantago lanceolata,
Achillea millefolium, Galium boreale and many others. The low nutrients availability on this site
is very important for studies with the focus on the influence of increased nutrients inputs on the

vegetation. . . I .
To assess the small-scale heterogeneity in the soil nutrients availability a block of the soil

| was divided into 9 x 5 adjacent square subsamples, each with side of 4 cm. The soil was collected
§ into depth of 6 cm, corresponding to the zone where at least 90% of the root biomass is situated.
| 1t was felt that some species might occupy a rather separate niche characterized by their roots
| penetrating deeper into soil horizon (see also Fitter 1982), but separate analysis of lower soil
i layer was impossible due to funding constraints, The plants rooting in each of the 45 soil blocks
i were collected and the presence and semi-quantitative abundance was recorded using a very
§ simple scale (O=absence, 1=one or few individuals, depending on the species' constitution,
¢ 2=large abundance of that species). The soil was sifted through the 2 mm sieve and analysed
within few hours for the contents of nitrogen in the NHy* form, the contents of anorganic
§ nitrogen in the NO3~ form and of the water-soluble phosphate were determined in the next two
: days. The nutrient contents was expressed as 1g of N (or P) per g of dry sieved soil, as well as the
. nutricnt contents per soil volume. The water content (expressed as weight percentage) was
- measured, as well.
_ To test for relationship between plant cover composition at the spatial scale of

i npproximately 4 cm and the soil nutrients availability, the Redundancy analysis - RDA (a
§ constrained type of linear ordination method, closely related to Principal components analysis -
PCA, sce ter Braak et Prentice 1988) was done with forward selection of the explanatory
§ variables, based on the Monte Carlo permutation test (ter Braak, 1987). The PCA was also
applicd to the species data to summarize the trends of the co-occurrence of the species in the
studied segment of vegetation. The analyses were done with the program CANOCO (ter Braak
1987) and ordination diagrams prepared with program CanoDraw (Smilauer, 1992) and CanoPost
¥ (Smilauer, unpublished).
‘ The relationship between species occurrence and the one of the soil nutrients found
significantly related with the species composition of the vegetation was studied by fitting
a generalized linear model (McCullagh et Nelder, 1989) with proper model selection based on
forward selection using the AIC statistics (Chambers et Hastie, 1992). For the simple abundance
£ cstimate, the model with expected Poisson distribution was used, but assuming (in calculating the

i§ AIC siatistics) that the response variable might be in fact under-dispersed (McCullagh et Nelder,
£ 1989).

Results

§ The concentrations of the two anorganic forms of nitrogen (the NH4™* form and the NO3~ form)

| and of the water-soluble phosphate are displayed in Fig. 1, Fig. 2, and Fig. 3, respectively. The

conc.emrations are given as pg of N or P per g of dry soil, as this form presented a slightly better

relanonship with the species composition data. The Fig. 4 displays the ratio between

COncemr‘anon of both form of anorganic nitrogen to the concentration of available phosphorus.
Omparing these values to the data about concentration of these two elements in plant dry matter

3 (generally. N:p i approximately 10:1), it can be clearly seen that phosphorus is probably limiting

(]
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the biomass production more substantially. Generally, all the studied nutrients show very low
: lgwels. Fig. 7 displays the main results of PCA, where composition of the plant cover was studied
and the corresponding changes in the nutrients availability were subsequently projected into the
ordination space. From that ordination diagram, it might be seen that there are two main groups
| of species forming the "matrix" of the community: one represents 'small-scale pa.tches of Poa

angustifolia, the other one small tussocks of Luzula campestris being accompanied by Festuca
rubra. The third important grouping, with species like Carex hirta, Plantago lanceolata,
Anthoxanthum odoratum is somewhat independent in its occurrence to the previous two (which
are to large extent mutually exclusive) and corresponds to small-scale "gaps" between the patches
dominated by the species of the one of the two above-mentioned grouppings. The reason for the
independence apparent in the ordination plane of the first two axes of PCA lays probably in the
fact that the mosaic of these patches with gaps is on a scale smaller than that used in this study
(i.e. smaller than 4 cm). It might be seen from the projection of the variables describing the soil
nutrients availability that higher nutrient contents are rather under the patches of the dominant
species (Poa angustifolia or Luzula campestris). The spatial distribution (corresponding more or
less to the dominance of Poa angustifolia vs. Luzula campestris and Festuca rubra) of the scores
of the first PCA axis is displayed in Fig. 6. The black regions (corresponding to the bars going
§ downwards from the zero plane) correspond roughly to the subplots where Poa angustifolia

. dominated. This might be seen also from the Fig. 5, where gray shading correspond to the
abundance value of 2 for Poa angustifolia, the black color to the value 1 and white areas mark the
absence of that species.

The forward selection of explanatory variables using the RDA method revealed that there
is a significant relation between availability of water-soluble phosphorus and plant cover
composition (P = 0.050, N=1999). The variable with the second best explanatory power was
concetration of nitrate form of nitrogen, but it was not significant (P = 0.087, N=1999). This
might be caused by the lack of relation as well as by the low power of the test (due to low
number of replicates), of course. Fig. 8 presents the ordination space of RDA with the POy~
concentrations as the only explanatory variable. Consequently, only the projections of the species'
arrows on the first (horizontal) ordination axis reveal something about the relations of the
occurrence of those species with the phosphorus availability. Only species where significant
relation was found are displayed. In the results of fitting generalized linear model to the
dependency of species abundance on the phosphorus availability, only Poa angustifolia had
significant increase in its abundance with increased availability of phosphorus in the soil, the
other species having significant change in their "abundance” along the phosphorus availability
gradient (4chillea millefolium, Anthoxanthum odoratum, Carex hirta, Festuca rubra, Veronica
chamaedrys) show varying extent of decrease in their abundance.

Discussion

This study is presented in hope to provide interesting insight into this rather unexplored field of

COrrelaii_on between low-scale nutrient patchiness and the patchiness in the plant cover

composition. I am well aware of the many shortcomning, that such study undoubtly has, the most

significant of them being:

a? the distribution of individual plants on such a small scale is inevitably influenced by their life

:;Slof‘_\’ related of the history of that particular place, where the sample was taken. The replicate

" ocks for the study would be extremely needed.

Igi;he sturd:ed m.ltrient resources have distinct patterns of their intra-seasonal variability which
study fully ignored. The study was done in time where large nutrient input (namely of
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5) is needed, as most of the plants are in the phenophase of flowering or shortly before

o Another important part of the season is the period of rapid accumulation of
und biomass, starting shortly after snow thawing, and the story that would be told by

; abovegr?j done in that part of season can be much different.
g st;l ]yanation of the causality of the observed patterns or relations could be attempted, a
E 2 ;‘;;u,ﬁme study would. be cl_early needed . - -
d) even the expected relatm_nshlp between'th'e ROII:!t of rooting of a plant an-d the nutrient
# availability of the surrounding block of soil is limited, as many c?f the species are clonal plants,
i with expccted transfer of nutrients between the ramets via the rhizomes.
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Figure captions

Tab. 1: Significant relations between abundances of the species and the water-soluble
phosphorus availability in the soil. All the models (fitted with Generalized linear model) were
linear and only those significantly improving the null model are presented in the table.

Fig. 1 : Spatial arrangements of the anorganic nitrogen availability, in the NHy* form. The
concentration is given as pug of N per gram of dry soil weight. Each block is a square with a side

of 4 cmm.

Fig. 2 : Spatial arrangements of the anorganic nitrogen availability, in the NO3~ form. The
concentration is given as pug of N per gram of dry soil weight. Each block is a square with a side
of 4 cm.

Fig. 3 : Spatial arrangements of the anorganic phosphorus availability, in the water-soluble
P043' form. The concentration is given as pg of P per gram of dry soil weight. Each block is a
square with a side of 4 cm.

Fig. 4 : Spatial arrangements of the ratio of available anorganic nitrogen (both form) to the
available water-soluble phosphorus. The ratio uses the concentration given as ug of N or P per
gram of dry soil weight. Each block is a square with a side of 4 cm.

Fig. 5 : Spatial distribution of the Poa angustifolia in the analysed segment of the grassland
vegetation. Each block is a square with a side of 4 cm. The gray area corresponds to large
abundance of P. a., the black area to an intermediate abundance, and the white area to the
absence of P. a.

Fig. 6 : Spatial arrangements of the scores of subsamples on the first ordination axis of PCA. The
scores are based on the species composition at each of the subsamples. Each block is a square
with a side of 4 cm. For the interpretation of the scores, see the ordination diagram in Fig. 7.

T

Fig. 7 : The ordination diagram displaying the first two ordination axes of PCA. These two axes
account together for 35% of the variability in the vegetation composition data. The expected
abundance (for the species) or expected concentration of the nutrients (for the explanatory
variables) increases linearly through the ordination plane in the direction indicated by the
corresponding arrow.

*Fig. 8 : The ordination diagram displaying the first two ordination axes of RDA. The first
ordination axis (horizontal) is constrained, corresponding to the increase in water-soluble
phosphorus availability (from left to right). It accounts for 4% of the variability in the vegetation
composition data. The second axis is un-constrained and account for 18% of the variability in the
Con_lposition data. The expected abundance (for the species) increases linearly through the
ordination plane in the direction indicated by the corresponding arrow.
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Chapter 4

Hydrology and water table dynamics

Co-authored with K. Prach and O. Rauch

In: K. Prach, J. Jenik, A. Large [eds]: Floodplain ecology and management. The
Luznice River, Trebon Biosphere Reserve, Central Europe. - SPB Academic
Publishers, Amsterdam
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3.3. HYDROLOGY AND WATER TABLE DYNAMICS

Petr Smilauer, Karel Prach and Ota Rauch

The LuZnice River is characteristic of those rivers where the average annual discharge
has its peak in spring because of melting snow in the headwater region. In summer
time a high, but short-lasting, discharge often occurs after heavy rains (usually thun-
derstorms). The lowest average discharges typically occur during the autumn and early
winter between the months of September and January. Fluctuations of water discharge
are ameliorated by the influence of water contained in deeper horizons of the perme-
able sediments in the LuZnice catchment (Chabera 1985).

In the Upper LuZnice River, there are two permanent measurement points equipped
by limnigraphs operated by the Hydrometeorological Institute, located just outside the
main research area. One is located 143 stream kilometre upstream from the confluence
with the VItava at a bridge crossing the LuZnice near the village of Nova Ves, the
other, 117 stream kilometres from the confluence is located near Chlum u Tieboné.
Using standard hydrological coefficients, it was possible to recalculate all long-term
hydrological parameters measured at these two sites to provide a surrogate hydrologi-
cal profile for the centre of the research area. The centre of the research sector was lo-
cated at a bridge at the village of Haldmky, 137 stream kilometres upstream of the con-
fluence with the Vitava.

The following parameters characterize the river at this point:

Long-term average discharge: 4.85 m3.s™}

maximum 100 yr discharge 129

maximum 50 yr discharge 112

maximum 10 yr discharge 76

Average monthly discharge: Jan 3.73; Feb 5.29; Mar 8.39; Apr 7.61; May 4.95; Jun
4.27; Jul 5.56; Aug 4.66; Sep 3.30; Oct 4.12; Nov 3.44; Dec 2.86

The long-term average precipitation in the respective part of the catchment was calcu-
lated as 753 mm per annum occurring over the 645 km? section of the 4225 km?
Luznice catchment which lies upstream of Halimky (Chébera & Sabatova 1965;
Krasny 1980; Homolka 1984; unpublished data of the Hydrometeorological Institute,
Ceské Budgjovice). The downstream movement of the water in the river channel, to-
gether with related horizontal and vertical movements of ground water in the
hyporheic zone surrounding the river, are the key factors governing the many hydro-
logical processes occurring in the river-floodplain complex. In this section, both hori-
zontal and vertical ground water movements are discussed, along with flow variability
for the reach in question.

The horizontal movement of underground water in the floodplain sediments was
measured by marking water samples by Br nuclide and detecting its spread over time.
The average rate of water movement was estimated to be several cm per day at the
boundary with the floodplain terrace, and approximately 10"! m. day?! in the middle of
the floodplain sector examined, equidistant from the terrace and the river channel it-
self. Although not directly measured, this rate of flow would be expected, using these
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Fig. 3.16. Occurrence of flooding events in individual months during the period 1960-1993. The occurrence
is derived from monthly averages of walter discharge for the years 1960 to 1979 (using the threshold value
of 7 m3s™'). The information for the period 1980-1993 is based on daily average data. Here, the threshold
used is 10 m¥s*!, which is much more reliable indicator of flood in the area. The measurements were
conducted on the PilaF profile at 117 stream kilometre by Hydrometeorological Institute.

dynamics. Firstly, the rises and falls of discharge volume during the “spike events”
proceed at different paces. Fig. 3.18 displays the large differences among the daily av-
erages in the period of 1989-1993. From this, it can be seen that the discharge volume
rises much more swiftly than it decreases afterwards. Secondly, the speed of the daily
change of the discharge volume increases almost exponentially with the absolute
amount of water involved (Fig. 3.19). Finally, the localized precipitation events in the
river discharge area, often unpredictable from the meteorological situation at the site
under consideration, could result in sharp volume spikes (even resulting in short-dura-
tion floods) in the summer months and the occurrence (in a less pronounced form) in
other parts of year of sudden step-increments in the discharge volume.

An attempt was made to simulate daily river discharge volume dynamics for the
sector under investigtion. This, it was hoped would feed directly into the modelling of
the primary production of the plant communities in the river floodplain (see Chapter
6.2). In doing so, efforts were made to include all the peculiarities of the flow dynam-
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Table 3.4. The probability of one or more floods occurring in individual months of year, based on the data
from 1980-1993 (left hand column) and 1960-1993 (right hand column). March and April, the two months

1 with a probability of flooding higher than 0.5 are highlighted with a grey background.

1980-93  1960-93
Jan 0.2 0.2
Feb 0.2 0.3
Mar Ho
Apr
May 0.4 0.4
Jun 0.2 0.3
Jul 0.2 0.3
Aug 0.1 0.2
Sep 0.0 0.1
Oct 0.1 0.1
Nov 0.1 0.1
Dec 0.3 0.3
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Fig. 3.17. Distribution of monthly averages of discharge rate values in individual months based on a loge
distribution. The reference line corresponds to the threshold value for flooding, as used in the upper part of
Fig. 3.16, namely loge 7. The distribution of values is shown by the box-and-whisker diagrams with the
usual meaning (afier Tukey 1977).

ics outlined above. However, the primary limitation of this approach — not including
the meteorological events occurring in the whole catchment area discharged by the
river — makes the simulation results somewhat less reliable. In the simulation displayed
in Fig. 3.20, the occurrence of local “spikes” or step-increments, as well as the pace of
the discharge volume decrease, are based solely on local metearological conditions.
This gives to the simulated series an inevitably different pattern from what would be
produced by integrating precipitation events and temperature over the much larger area
of the river catchment.
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Fig. 3.18. First-order differences between daily means of river discharge volumes during the period 1989-
1993. Only positive volume increase of 4 m*s*! or more and negative ones volume decreases of -2 m3s! or
less arc displayed. The different thresholds were used so that the decrease events displayed approximately
cover the same set of “spike” events represeated by the increase events.

The simulation of the discharge volume is based on the simulation of the dynamics
of the first-order differences between daily values. The increase of the volume comes
from three principal sources:

— for the early spring, one flood event with a fixed probability of recurrence is sched-
uled for each year. If the event is scheduled for a given year, the actual start (depend-
ing intrinsically on the start of significant snowmelt in the headwater region) will be
triggered by the threshold value of average daily air temperature. The value used
(mean air temperature at 2 m averaged over last 5 days, exceeding 0 °C) was derived
from the observed meteorological data.

— for all periods of the year, daily precipitation above a certain level triggers an in-
crease in the river discharge volume. The simulation of discharge volume data divides
the year into several distinct periods (corresponding roughly to the four seasons of the
year), and the duration and extent of the precipitation-induced increases differ among
these periods.

— at times of the year where discharge volumes are generally low and slowly decreas-
ing (a feature typically seen in autumn months, but which often occurs also in early
winter), random step-increments are scheduled with a fixed frequency, which patterns
the influence of local precipitation events in the river catchment area.

In Fig. 3.20, the daily river discharge volume data for two years (1980-1981) is
compared with the data for the first two years of one simulation run of the model.
There is significant variability among individual years in the real data, so the similarity
of the simulated data with the real data should not be compared in terms of the exact
distribution of the peaks throughout the years or the absolute height of the peaks
(which happen to be lower in the simulated run used, as compared with the “real-
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Fig. 3.18. First-order differences between daily means of river discharge volumes during the period 1989-
1993. Only positive volume increase of 4 m™s”! or mere and negative ones volune decreases of -2 m3s™! or
less are displayed. The different thresholds were used so that the decrease events displayed approximately
cover the same set of “spike” events represented by the increase events.

The simulation of the discharge volume is based on the simulation of the dynamics
of the first-order differences between daily values. The increase of the volume comes
from three principal sources:

— for the early spring, one flood event with a fixed probability of recurrence is sched-
uled for each year. If the event is scheduled for a given year, the actual start (depend-
ing intrinsically on the start of significant snowmelt in the headwater region) will be
triggered by the threshold value of average daily air temperature. The value used
(mean air temperature at 2 m averaged over last 5 days, exceeding 0 °C) was derived
from the observed meteorological data.

— for all periods of the year, daily precipitation above a certain level triggers an in-
crease in the river discharge volume. The simulation of discharge volume data divides
the year into several distinct periods (corresponding roughly to the four seasons of the
year), and the duration and extent of the precipitation-induced increases differ among
these periods.

— at times of the year where discharge volumes are generally low and slowly decreas-
ing (a feature typically seen in autumn months, but which often occurs also in early
winter), random step-increments are scheduled with a fixed frequency, which patterns
the influence of local precipitation events in the river catchment area.

In Fig. 3.20, the daily river discharge volume data for two years (1980-1981) is
compared with the data for the first two years of one simulation run of the model.
There is significant variability among individual years in the real data, so the similarity
of the simulated data with the real data should not be compared in terms of the exact
distribution of the peaks throughout the years or the absolute height of the peaks
(which happen to be lower in the simulated run used, as compared with the “real-
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log Idili(Flow}+0.1I

log Flow

Fig. 3.19. The loge — transformed absolute values of differences between consecutive daily discharge
average values (Y axis) plotted against the loge — transformed discharge volume values (X axis). The curve
attempts 1o visualize the trend and is based on a loess-model with parameters (a=0.3, I=1) (after Cleveland
1993).

world” example). Rather, they should be compared in terms of the shape and general
distributional properties of the “ups” and “downs” of the series. When this is done, the
similarities of the simulation to the real data series becomes apparent.

Underground water table simulation

At the study site at Halamky, the dynamics of the underground water table was ob-
served over a number of years at more or less regular intervals. The water table was
observed over a cross-section through the river floodplain, starting near the river bed at
one end of the cross-section and ending at the first river terrace (see Chapter 4.1.3).
This cross-section spanned a distance of approximately 150 metres. An attempt was
made to simulate daily positions of underground water table, based on data relating to
river discharge volume and precipitation events — two factors presumed to influence
the underground water table dynamics in general.

An important feature of the underground water table in the studied cross-section is
its curved shape with a small depresston in the middle of the cross-section and large
rise from the bottomn of the first river terrace. This feature, together with the non-linear
dynamics of the water-table position during the season, led to the choice of a general-
ized additive models (GAM) approach (Hastie & Tibshirani 1990) to simulate the wa-
ter table position throughout the year. To enhance suitability of graphical presentation
without loss of accuracy or predictive power, a Gaussian distribution/identity link fam-
ily of GAMs was selected. GAMs are less parametric that the more traditional linear
models and are more suitable for graphical presentation.
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Fig. 3.20. The comparison of the real data (upper curve) ~ from years 1980-198] with the simulated data
(lower curve) describing the daily averages of river discharge volume (Y axes, m-s1). The horizontal scale
represents days 1-731 in the time series.

Four predictor variables were considered during model selection, namely: actual
daily average river discharge volume (Flow), the average discharge volume for the last
ten days (Flow10), the amount of precipitation in the last five days, and location on the
cross-section across the floodplain, expressed as distance from the river (Pos). The
most parsimonious model was selected by a series of stepwise model changes, using
the AIC criterion (Akaike 1973) to find the “best” model.

In the model, the amount of precipitation, in addition to the river discharge amount
descriptors, turned out to have little predictive power despite the fact that there was a
clear evidence of a greater role being played by the precipitation events on the part of
the cross-section near the river terrace. The final fitted model explains about 86% of
the variability in the values for the underground water table position. As expected, the
major explanatory power was exercised by the variables Pos and Flow, while the
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Fig. 3.21. Graphical presentation of the fitted generalized additive model to the underground water table
data. The solid-line curves in the individual diagrams (except the bottom left one) display the fitted smooth
terms together with their point-wise confidence regions (sec Hastie & Tibshirani 1990 for more details). The
diagram at the bottom left displays the two variables' interaction term, fitted by a means of a lincar term
(plane). The bars on the horizontal axis represent jittered positions of individual observations in the space of
the predictor variables.

Flow10 and linear-form interaction between Flow and Pos (expressing different re-
spense of water table to the river flow at different points across the floodplain) also
proved influential. Fig, 3.21 presents in graphical form the terms of the fitted model.
The values of the predictors are displayed on the horizontal scale of the corresponding
graph. Transformed values can then found on the vertical axis using the displayed
curve. The contributions of individual terms are then added and corrected by a con-
stant (99.4 in this case) to yield a predicted water table level relative to the arbitrary
reference point of 455.0 m a.s.]. Resultant water table height values are expressed as
relative altitude in centimetres.

Fig. 3.22 displays a simplified response surface fitted by the GAM model (with
variable Flow10 kept at its average value). It is apparent that the slope of the water ta-
ble has a much steeper gradient when the underground water is lower down in the soil
layer. The decrease at higher stream discharge rates in the slope of the underground
water table across the river floodplain provides evidence that re-charge of the under-
ground water from the river itself takes place. Fig. 3.23 shows the position of the un-
derground water table for a period of three years, based on the observed river flow data
and fitted generalised additive model. A regular sequence of rises and falls in the
height of the water table can clearly be seen.

As the relative altitude of the soil surface on the studied cross-section is rather well
determined, we can combine this knowledge with the predicted underground water ta-
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Fig. 3.22, Three-dimensional projection of the response surface fitted by means of the generalized additive
model, presented in Fig. 3.21. Here, the values of the third explanatory variable (Flow10) are kept at its
average. The calculation of the predicted water 1able level (on the vertical axis) also takes into account the
contribution of the (Flow.Position) interaction term.
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Fig. 3.23. Underground water table dynamics as predicted by the fitted generalized additive model (see Fig.
3.21 and Fig. 3.22), using the real river flow data for three consecutive years (autumn 1986-autumn 1989).
The relative altitude on the vertical axis refers to the reference point at 455 m asl, which is the
approximate altitude of the river bed at the study site.
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ble position to simulate the occurrence and duration of flooding events based on these
data. Caution is needed however, when extrapolating these results into the broader
realm of the floodplain. The sector of the floodplain subjected to detailed investigation
is covered with well-drained, sandy river sediments, A significant part of the flood-
plain area (usually associated with remnant palaeochannel features) has different hy-
drological properties however, with less well drained soil horizons buffering the influ-
ence of river flow dynamics and increasing the relative importance role of
precipitation in the maintenance of water table position. In these parts of the flood-
plain, much slower lowering of the water table in late summer / early autumn should
be expected, along with significantly slower retreat of flood waters, once they rise
above the level of the soil surface.
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6.2 MODELLING PRIMARY PRODUCTION AND NUTRIENT DYNAMICS

Petr Smilauer

There have been numerous attempts to model primary production in various terrestrial
ecosystems, with a range of different approaches being taken by different authors. An
excellent example is provided by the extensive ELM model created as part of the Inter-
national Biological Program (IBP) of UNESCO in the 1970s, by the U.S. Grassland
Biome research team (Cole 1976; Innis 1978). The ELM model divides the prairie eco-
system into several independent blocks (for example primary producers, abiotic sec-
tions, mammalian consumers, decomposers etc.) and expresses the state of individual
blocks by an array of state variables. Any changes to that state are described by mecha-
nistically conceived processes, which are implemented chiefly as difference equations,
with the time steps on the scale of days. The ELM model was successful in collating
the efforts of many ecologists and helped to identify areas where further detailed inves-
tigation was much needed.

Many other published models concentrate on finer-scale ecophysiological ap-
proaches, particularly simulating the processes of photosynthesis, respiration and nutri-
ents assimilation, translocation and conversion (e.g. Botkin 1969; Ondok & Gloser
1983). Several contributions have beéen published conceming detailed simulation of
light and heat conditions in the vegetation canopy, the diurnal course of evapo-transpi-
ration, etc. These are, however, concemned with a scale of resolution too fine for the
purposes of our project.

Several studies have been done focusing on the productivity of grassland ecosys-
tems in the Czech Republic during last 30 years, namely by the team of Prof. M.
Rychovska (Rychnovskd 1985, 1993). The results of the study, carried as a part of the
Czechoslovak contribution to the 1BP programs on the grassland ecosystems of the
river floodplains in South Moravia, are of particular relevance to the Luznice River
project, especially in relation to modelling (Rychnovska 1972).

General aims of the model development

The approach taken by the authors of the ELM model seemed to be at a scale suitable
for our purposes, but the required amount and quality of input data was apparently be-
yond the budget of the Luznice River project. Yet, we have considered the develop-
ment of a simulation model to be still desirable for a number of reasons:

(a) The simulation model brings together formulations for a number of research hy-
potheses, many of them supported by the collected data. The phenomena covered by
the individual hypotheses are often inter-related and the model helps also to express
and clarify their relationships to each other.

(b) The model could potentially serve as a research tool, allowing us to see the con-
sequences of changing our views of the processes running in the ecosystem. A well-de-
signed simulation model allows for easy integration of new knowledge about underly-
ing ecosystem processes, so that the knowledge can be immediately compared with
already existing hypotheses.
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(c) During the research project management, the model-development requirements
can provide supporting information for prioritizing individual research tasks (this how-
ever does not always work perfectly, mainly due to budget limitations).

(d) The model might point to the most important bottle-necks in our ability to de-
scribe the processes running in the ecosystem. While it is not always managable to act
on these during the project, this certainly helps in designing future projects.

Requirements for the modelling approach

Beside the inability to investigate and quantify so many various facets of ecosystem
processes influencing solar energy fixation, uptake of nutrients from the soil system,
the fate of nutrients during litter decomposition etc., we wished to incorporate several
novel aspects into our modelling approach to make it more useful and appealing to the
ecologist:

(a) The model has to be casily maintainable. The general-purpose programming lan-
guages are too much technical and the code they are written in often unreadable for
non-specialists, while the programming systems specialized for simulation of ecosys-
tems are usually restricted in their abilities by the modelling philosophy “of their au-
thors and their availability is generally limited.

(b) The model should be, at least as far as the parameters are concerned, easily
modifiable for individual model run by individual users.

(c) A major problem with traditional simulation models is their strictly quantitative
nature. At its extreme, the prevailing simulation approaches make it possible to incor-
porate scientific knowledge into the model only as long as it can be re-expressed by
means of differential equations, with all the relevant parameters precisely quantified.
While it is still possible to put heuristic, procedural-knowledge such as “If the rainfall
amount in the late autumn is very high, then a large part of standing dead biomass
moves to the litter” into a surrogate form of differential equations, using a combination
of indicator variables and threshold values, that way of implementation is totally coun-
ter-intuitive for the ecologist and only increases his/her scepticism towards the simula-
tion model. So, an easy incorporation of heuristic rules into the model was much
needed.

(d) Even if we can use the IF..THEN... rules to express some of the important

_knowledge ecologists have about the subject, there still remains the difficulty when

dealing with sometimes vague Or uncertain terms contained in the hypotheses. In the
example sentence from the previous paragraph, the terms like *...rainfall amount ... is
very high...” or “...a large part of ... biomass...” are difficult to change into rules with
an exact threshold value for the amount of precipitation needed to move, say 0.73% of
the standing dead biomass to the litter compartment. While it is ultimately necessary to
quantify that process if it has to enter the simulation model, it is probably better to
keep the knowledge in its original, semi-quantitative form as long as possible. This is
where the approach of linguistic variables, as used in the theory of fuzzy sets (Zadeh
1965, 1983), can be applied.

(e) Another problem situation, which occurs when we ask ecologists to explicitly
formulate their knowledge, is that when the ecologist is not fully convinced about the
applicability of the knowledge. This might be a result of several alternative expecta-
tions which differ subtly in their assumptions, but in the given context is not possible
to discriminate among them. A similar problem situation might result from the con-
flicting opinion of different experts. This is a problem widely recognized in the field of
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knowledge acquisition for building expert systems and the traditional way of approach-
ing it is to use some form of the truth maintenance system.

(f) An important specific requirement for our simulation model is that it should be,
in its global architecture, applicable to the all three dominant vegetation types found
on the floodplain of the LuZnice river where biomass dynamics were studied. While
the model is currently developed sufficiently only for the Alopecurus type, its architec-
ture is easily applicable to the Urtica- and Phalaris-dominated stands (see Chapter
6.1).

(g) An important role in the modelled ecosystems is played by sudden events -
mowing and flooding — which might or might not be scheduled for a particular time or
might (in case of the flood) happen several times in a year. These features should be
incorporated into the model.

Bearing in mind all the considerations outlined above, a prototype form of simulation
model was developed for the LuzZnice floodplain. Its structure is somewhat heterogene-
ous, as the desire to use the appropriate method for every sub-problem dominated over
the criterion of an unified solution. Part of the system was developed in procedural lan-
guage (programming language C), the major part was developed using an expert sys-
tem development language called CLIPS (Giarratano & Riley 1994; CLIPS 1993). To
enable the use of fuzzy logic based reasoning as well as the use of truth maintenance
via certainty factors (Giarratano & Riley 1994), the modification of the base CLIPS
systern was used, called Fuzzy CLIPS [version 6.02] (Orchard 1994). The CLIPS lan-
guage is a language based on the mix of three programming principles; (i) rule-based
programming used in the traditional expert systems, (ii) object-oriented programming
and (iii) procedural programming. It is portable among various platforms and, in fact,
freely distributable,

The simulation system developed does not use the object-oriented extensions of
CLIPS and it is mainly oriented towards the procedural programming with much
stronger control of sequential operation than it is usual for the traditional expert sys-
tems. Despite the rather strong sequential control over the system execution (particu-
larly for the sequential switching between individual modules — see below for their
list) exercised via several mechanisms provided by CLIPS (system of salience levels,
manipulation of the focus stack and use of control facts — see Giarratano & Riley 1994
for the details), the most of the code is written using inferential rules. The CLIPS lan-
guage syntax is similar to the LISP programming language (or, more closely, to the
OPSS5 ES toolkit) syntax and a rather simplified example of the rules used in our simu-
lation model looks like the following:

(01) (defrule BIOM::ALOP_EAMRgr

(02) *“RGR-s for EarlyPostMow period”

(03) (GrowthPhase (phase EarlyPostMow))

(04) (not (rgr-set))

(05) (Biomass (SystemName Alopecurus)) ;//specific for Alopecurus stnd.
(06) 7rD <-(rgr-Dom 7)

(07) (SinceChange 7sc)

(08) =>

(09) (retract 7rD)

(10) (assert (rgr-Dom (randVal (- 0.0500 (* ?sc 0.000600)) 0.05)))

(I )

b
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The numbers in the parentheses on the beginning of each line are not actually part of
the code. They were added only to facilitate discussion of the demonstrated code.

The code in lines (01) and (02) is part of the CLIPS-specific syntax for defining
rules, giving the name to the rule and an optional comment in quotes (** ™). The follow-
ing lines until line (08), represent so called antecedent of the rule, which presents fact
patterns (either specific facts which must exist before the rule is activated, or condi-
tions the existing fact must fulfil). Line (03) specifies that the current phase of the
biomass growth must be the one named EarlyPostMow (see section about biomass
simulation below). The control-fact pattern specified in line (04) prevents this rule
from activation (“firing” in the expert-system terminology) if the values that this rule
has to produce were already set (in that case, the fact rgr-set would already exist). The
fact pattern in line (05) assures that this rule applies only to one type of the vegetation,
namely the mown meadows with dominating Alopecurus pratensis (as the comment at
the end of the line states). This is needed for this rule, as the coefficients defined by
this rule are specific for particular types of vegetation. The original rule defined totally
six coefficients of the relative growth rate (RGRs), but all except that for the live
biomass of the dominant species were omitted for simplicity. The pattern on the line
(06) binds the existing value for that coefficient (rgr-Dom) so that it can be later re-
moved from the knowledge base (in line (09)). At line (07), the number of days passed
since the current growth phase began is acquired into the variable 7sc, so that it can be
used to calculate the new value of the RGR coefficient (which is done in line (10)).
The lines (09) and (10), separated from the previous one by the => symbol, form the
consequent of the rule, whose actions are performed (removing the old fact and creat-
ing a new one with the calculated value, in our case) only if all the conditions given in
the antecedent of the rule are satisfied.

The presented example could seem to be somewhat confusing for the first time
reader, but it is generally accepted, that the syntax used by the CLIPS system is easy
enough to learn for most people. The interested reader is again referred to Giarratano
& Riley (1994).

S

Data used for simulation model development

The model is primarily concerned with the simulation of the main features of the sea-
sonal dynamics of the three modelled vegetation types (see Chapter 6.1) with consid-
eration given to the role of the floods (Chapter 3.3) and of the mowing regime (in the
case of the Alopecurus-dominated stands). For the abiotic parts of the model, the
source data consisted of the daily meteorological observations from the nearby mete-
orological station (Chapter 3.2), the data about the underground water levels across the
river floodplain, and the daily average river discharge volume data (see Chapters 3.2,
3.3 and 4.1.3 for details). To obtain a detailed information about the pattern of changes
in the biomass production, a detailed sampling campaign was run during two seasons —
1991 and 1992 (Chapter 6.1). The following biomass categories were considered in the
model:

1. The living aboveground biomass of the dominant species;

2. The standing dead aboveground biomass of the dominant species (“standing
dead” being defined as all the dead biomass not lying on the top of the soil);

3. The living aboveground biomass of the other species;

4. The standing dead biomass of the other species;

5. The litter biomass, representing all the decomposing biomass lying on the top of
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the soil and not attached to any living parts of plants;
6. The living root biomass;
7. Contents of C and N in the above mentioned categories, changing during a year;
8. The rate of litter decomposition.
The exact methods of collecting biomass samples, and all respective figures are de-
scribed and presented in Chapter 6.1.

Meteorological variables subsystem

The simulation of the seasonal patterns of biomass production needs certain input from
the weather simulator. The module WEATHER written in the CLIPS language reads
the daily predictions of the meteorological variables values from an external text file,
Currently, only the precipitation amount and average air temperature at 2 m are di-
rectly utilised in the system, beside the average precipitation and air temperature for
the last five days, provided from another input file. These input values are then used at
the beginning of each simulated day to update values of two fuzzy (“linguistic”) vari-
ables called FuzzyTemp and FuzzyPrec which are defined with several fuzzy quantifi-
ers like low, high, low-for-spring etc. This allows to define rules requiring conditions
such as “IF the precipitation is not too high...”, which is translated into CLIPS syntax
in the form:

(FuzzyPrec NOT [ very high ])

The input file with the weather simulation data is read not only by the main simulation
model, but by-the river flow/underground water table dynamics simulator as well. The
temperature and precipitation data are used to simulate the daily average nver dis-
charge values. The meteorological simulation is done in a way similar to that used by
Randell & Gyllenberg (1972), as it structures the generation of the values of meteoro-
logical characterics according to the so called meteorological situations (or air-mass
types). In the Czech Republic, a classification of the current meteorological situation
into one of the 28 distinct types has been done on a daily basis since 1946. The values
published in Stary (1989) together with tables listing the sequences of meteorological
situations for the years 1979-1989 were used to create a generator of meteorological
situations. The generator uses different parameters for the three parts of the year, dis-
tinguished by the meteorological sub-model. The division of the year was based on the
results of a multivariate analysis (principal components analysis) of the monthly aver-
ages of the meteorological variables, For each part of the year, the sequence of the me-
teorological situations is generated using transition matrices simulating first-order
Markov process. For each new meteorological situation, its length (in days) is gener-
ated based on the known frequency distnbution of the lengths of the given situation
type over the past 30 years. The values of the meteorological variables are generated
from the table of distributional parameters (mean values and standard deviation) of the
variable for a particular meteorological situation in the particular part of the year.

River flow and underground water table simulation

The module RIVER uses two input files to update the river discharge rate as well as
the underground water table profile values (the relative altitude of the water table at

1.9
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distance 10, 20, ..., 150 meters from the river) at the beginning of each day. The water
table altitude values are then compared with the input parameter (specifying the dis-
tance of the simulated site from the river and the relative altitude of the soil surface
above the reference point) and the flood event is generated for the given day, if appro-
priate (i.e. if the predicted water table is above the surface). For information about the
method for generating the river discharge values and modelling the underground water
table profiles, the reader is referred to Chapter 3.3.

Season phase subsystem

The whole year is divided into several phases. Their sequence depends on the presence
of mowing in the particular year, which might be set as one of the input parameters.
The names, meaning and typical starting dates for the individual phases are summa-
rized in Table 6.8. The specification of rules and parameters was done for the
Alopecurus type, tuning the parameters to both the mowing/no-mowing situations. The
maintenance of the current date and of the phases of season is done in the DATE mod-
ule.

Biomass growth subsystem

This is the core subsystem (module BIOM), where the dry weight of biomass is pre-
dicted, in steps of one day, for all the six simulated compartments (dominant species
aboveground biomass live or standing dead, other species aboveground biomass live or
standing dead, litter compartment and root system compartment). The changes in the
compartments are modelled using the RGR (relative growth rate) coefficients express-
ing the change in the biomass weight as fraction of its weight in the previous day. No
attempts were done to separate counteracting processes (e.g. the development of new
live biomass versus its movement to the standing dead biomass). Only the changes in
the litter compartment are not simulated in this way, but their change is modelled as a
fractional change related to the sum of the weights of both aboveground standing dead
compartments on the previous day. There are other rules which modify the RGR coef-
ficients before they are applied, based on the fuzzy meteorological variables (Fuzzy
Temp and FuzzyPrec). Other rules, acting directly on the biomass compartments (not
on the RGR coefficients), are defined for the mowing day and for the processes that
occur during the flood (removal of the part of the dead biomass compartments, no
growth for the live biomass compartments) and in the period shortly after the flooding
ceased (increased growth of live biomass, increased rate of litter decomposition).

Additional rules can be be easily added or existing ones modified as the main simu-
lation system (written in CLIPS language) is a interpreted one and the system reads the
rules and facts on the beginning of each simulation run from human-modifiable source
files.

Fig. 6.3 shows the dynamics of the root compartment in the results of the one year
simulation run for the Alopecurus pratensis stand, where the meadow was mown at the
beginning of June. There is visible influence of the start of the season of vegetative
growth, the change at the beginning of the LatePreMow season, where the amount of
the root biomass starts to recover, the rapid depletion following the hay-cut and finally
the “recovery” before the early autumn. The dynamics of the above-ground live
biomass of Alopecurus pratensis, from the year of the simulation run is shown in Fig.
6.4. In this run, the peak biomass at the end of summer was lower than that achieved
before the cutting, but this is not necessarily so for every year.

9
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Table 6.8. Season phases of biomass development in the Alopecurus pratensis stand. Mow = mowing,

PHASE MEANING TIME PERIOD START
Quiescence the period of vegetative quiescence, with no | last week of November / first week of
living biomass December
EarlyPreMow beginning of growin season, with fast increase | depends on the vegetation type.
of biomass emounts and little production of | Usually last week of March or first
standing dead biomass. The production of { week of April for the Alopecurus type
above-ground biomass is expected to proceed
partly at the expense of the root system
LatePreMow the period of further accumulation of nutrients. | beginning of May. The phase ends
The production of new above-ground biomass | depending on the date of mowing
is based on the photosynthetic assimilation
EarlyPostMow short time period afier above-ground biomass | at the mowing date; end 11 days after
clipping, with intensive re-growth and { end of LatePreMow phase
depletion of the below-ground biomass
resources
LatePostMow the long period of above-ground and below- { when the EarlyPostMow ends
ground biemass accumulation
EarlyNonMow the meaning of this phase depends on the stand | mid June
type, in  Alepecurus the live biomass
accumulation slows down and percentage of
standing dead increases
LateNonMow the above-ground biomass is approximately at | mid August
its peak and significant amount of "ageing"
takes place
Slowdown gradual decrease of live above-ground biomass | mid September
and of its quality; accumulation of standing
dead biomass and liner
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Fig. 6.3. The simulated dynamics of the root system compartment biomass in the 4lopecurus pratensis stand
during one year. The vertical scale shows the dry weight of the functional roots in g . m?, the horizontal
scale starts at 1st January and ends at 31st December.

)



Modelling primary production and nutrient dynamics 195

Table 6.8. Scason phases of biomass development in the Alopecurus pratensis stand. Mow = mowing.

PHASE MEANING TIME PERIOD START
Quiescence the period of vegetative quiescence, with no | last week of November / first week of
living biomass December
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type, in Alopecurus the live biomass
accumulation slows down and percentage of
standing dead increases
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Fig. 6.3. The simulated dynamics of the root system compartment biemass in the Alopecurus pratensis stand
during one year. The vertical scale shows the dry weight of the functional roots in g . m?, the horizontal
scale starts at st Janvary and ends at 31st December.
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Fig. 6.4. The simulated dynamics of the live aboveground biomass of the dominant species in the
Alopecurus pratensis stand during one calendar year. The vertical scale shows the dry weight in g . m™, and
the horizontal scale starts at 1st January and ends at 31st December.

Nutrient contents subsystem

The information about the nutrient contents dynamics for the individual biomass com-
partments does not enable us to model gradual changes in these. This is particularly
because a more detailed study of response to particular types of ecological stress would
be needed. Also, the structure of the model is too rough to support the simulation of
nutrient content changes effectively, namely in the litter compartment, where mixing
of different cohorts of the litter — with different C/N ratio — takes place. Therefore, the
percentage of N or C is modelled as a fixed value for the given compartment and sea-
son phase. These percentage values are then multiplied by the modelled biomass
amount to yield the amount of nitrogen or carbon fixed in the biomass compartment,
An example of dynamics of the amount of nitrogen in the live aboveground biomass of
Alopecurus pratensis is shown in Fig. 6.5. The irregularities in the curve are caused by
the sudden changes of the percentage of N at the time of change from one seasonal
phase to another.

Technical details

The input parameters for the model run are provided in the configuration file. A simple
program was writen providing a user-friendly interface for setting-up the parameters
(see Fig. 6.6). The input parameters include the position of the simulated point in the
river floodplain (to enable appropriate generation of the flooding event), the range of
the simulated years, the names of the three input files and the one output (log) file, as
well as the dates of the mowing in the individual years. The output log file (by default

U
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Fig. 6.5. The simulated amount of nitrogen stored in the live aboveground biomass compartment of the
dominant species in the Alopecurus pratensis stand during one year. The vertical scale shows g N . m, and
the horizontal scale stants at 1st January and ends at 31st December.
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Fig. 6.6. An example of the user-friendly interface for setting up parameters in the model.

called SIMULRUN.LOG) contains one row of information for each simulated day,
starting with information about the flood (if any) and amount of dominant/other spe-
cies biomass removed by the cutting (only at the day the meadow was mown), fol-

bl
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lowed (for each day) by the date, name of the season’ phase and the current values for
the individual biomass compartments, as well as the amount of N and C held in the se-
lected compartments. To enable easy visualization of the simulation results, a program
called STRIPLOG.EXE was written which collects the non-regular events data (mow-
ing, flooding) and creates a file which is easily importable into all spreadsheets (tab-
separated ASCII format), with one column for each characteristic and the data about
floods and mowing events during the whole simulation run summarized in a table at
the end of the file.
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Petr Smilauer: Multivariate gradient analysis in ecology: helping ecologist to do it better

Summary

The applications of multivariate gradient analysis (MGA) in ecological research are many and
cover various directions of ecological research. The use of these methods become so widespread
and fashionable that inevitably an increased rate of inappropriate applications or inadequate
interpretation of their results followed. In this paper, I argue that a software-based guidance is
needed that would help the ecologist with the more difficult decisions to be made when using the
MGA methods efficiently. An expert system being developed with that purpose is described and
its further development discussed.

Using MGA in ecological research

The methods of MGA are used in the ecological research for a rather long time. Nevertheless a
"renaissance” of their use happened with their extension and assortment done by Cajo ter Braak
and summarized for example in ter Braak et Prentice (1988). The program CANOCO (ter Braak,
1987) implements the majority of the "model-based" methods of multivariate gradient analysis
(i.e. leaving out only the methods of (non-metric) multidimensional scaling type). The
"taxonomy" of the MGA methods features two important criteria. First, the methods are
distinguished based upon the underlying model of response of the variables in the primary data
(most often populations of plant or animal species) to the (hypothetical) gradients of their
"environment" into /inear and unimodal response methods. Next, two approaches to analysing
the change in the primary data (typically the composition of assemblages of species populations)
are distinguished: either these compositional gradients are hypothethical and maximize the fit of
the primary data to the underlying response model (here the MGA method with linear response
model is Principal Components Analysis - PCA and the method with the unimodal response
model is (Detrended) Correspondence Analysis - (D)CA) or they are constructed under the
constraint of being linear combinations of measured explanatory variables (the resulting MGA
method for the linear response model is Redundancy Analysis - RDA and for the unimodal
response model the Canonical Correspondence Analysis - CCA). While there is certainly
a danger of indiscrimate use of these methods in ecology (which is the danger of any of the
statistical methods), the methods like the CCA are generally accepted and used for analysis of
ecological phenomena on various spatial and temporal scales (Palmer 1993).

The use of the methods of MGA in ecology flourished through the last ten years and the
sophistication of their application increased as well. This might be seen from the bibliography
published by Birks et al. (1994), where only a subset of the MGA methods is covered (the
constrained MGA, including the CCA, RDA, and Canonical Variate Analysis - CVA). Yet
almost 380 studies employing one or other form of constrained MGA were collected from the
time period 1986 to 1993. Two most important fields of their application are terrestrial plant
ecology and limnology, with a prominent place of paleolimnology. Nevertheless, there are
important applications to the ecology of habitats of various taxonomical groups of animals
(insects, birds, spiders).

While the MGA methods represent potentially very useful tools for exploring ecological
data, their potential cannot materialize for free. A substantial background knowledge on these

- methods and the methods of visualizing their results is needed. And because the theory related to

the application of MGA methods is rather extensive, the software implementing these methods
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gets overly complicated, too. Based on these facts, courses covering the theory and practice for

these methods are becoming an important part of the university curricula of plant and animal

ecologists. '

The widespread use and popularity of the MGA methods brought the problem of
researchers applying these methods without necessary knowledge of their theoretical background
or even the practical rules for their use and interpretation of their results. Based on my experience
with teaching the MSc-level students and with the researchers applying these methods in their
studies, I consider the following list to represent the most frequent problems that the users of the
MGA methods face:

e users fail to distinguish different applicability of the methods based on the linear versus
unimodal response model and its dependence on the properties of their data. Most often, the
CCA or DCA (Detrended Correspondence Analysis) is used even when the corresponding
methods based on the linear response model (RDA or PCA, respectively) are more
appropriate

* users tend to use constrained MGA methods (such as CCA or RDA) at any occassion where
explanatory variables ("environmental variables" in the terminology of the program
CANOCO) are available. Even if the factors (presumably influencing the primary data) are
measured, it is useful to distinguish the different purposes of focusing the analysis on the
variability that might be explained by those explanatory variables (the constrained methods)
and the assessment of importance of the measured variables in explaining the main patterns in
primary data (as done by using non-constrained method with passively interpreted
explanatory variables)

 when using the constrained MGA, the user indiscriminately includes all the explanatory
variables in the analysis, even when there is strong collinearity among some of the
explanatory variables

» similarly, the user applies and interprets the results of constrained MGA even if the results of
these methods do not indicate any relation between the primary data and the explanatory
variables

» users often do not realize that even if the MGA method used is the appropriate one and it
summarizes the data with reasonable efficiency, the reliability of the positions of species
optima along an environmental gradient is not the same for all the species and that for many
species no reliable conclusion can be made

« users do not use the results of the MGA methods efficiently and only the very basic features
among those that might be seen in ordination diagrams are interpreted

The expert system

The problems described in the previous section represent a potential niche for expert system
software, that would be able to partly mimic the role of an expert user of the MGA methods and
advise less-experienced users of these methods on their appropriate use.

An expert system is a kind of software that attempts to emulate the decision-making
ability of human expert in a restricted and precisely delimited field of expertise (Giarratano et
Riley 1994). The expert systems are employed in various areas of human activities including
medical diagnosis, mineral exploration, financial analysis, military applications. The reasons the
expert systems are developed and used range from the need to retain knowledge that a
particularly skilful expert might possess up to the ability to apply the human expert's knowledge
with substantially higher speed than any human being can (a good example is the application of
expert system during the pre-flight controls on the space-shuttles). Nevertheless, the most
frequent reason of applying the expert systems in practice is to bring an expert knowledge to
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many users where availability of human expert is not always practical. In this way, we might look
at the creation of expert system as a particular form of transferring knowledge from one (or
several) person(s) to the users by the means somewhat complementary to the more classical
papers, textbooks or lectures. The expert systems advising about the statistical analysis are also
available, e.g. the Statistical Navigator system (Anonymous 1993).

A common mis-conception about expert system is that it is a kind of general reasoning
software being able to productively 'think' about the problems it is going to solve. On contrary,
the success of expert systems is based on their 'shallow knowledge'. Expert systems match the
knowledge they gain (by asking the user, looking into the available data etc.) with their
knowledge base and based on that stored knowledge assert new facts, ultimately leading to
suggestions or diagnostic that the system is supposed to produce. The knowledge base has
usually the form of so-called production rules, with the general form:

IF conditions that hold THEN conclusions that can be made

or
IF goal to be satisfied THEN actions that should be taken

The difference between the two above forms is usually not so strong and human expertise
in a particular area is usually composed from both types (beside other knowledge including the
semantic knowledge about relation between various terms and meta-knowledge, concerning the
applicability of the "knowledge proper" in particular context or in particular order). Yet, this

distinction might lead to different approaches to building expert Systems: an expert system has
two substantial parts - the knowledge base and the inference engine, which is a set of algorithms

like planning experiments (or data analysis), monitoring or controlling processes, and generally
to any problems with a multitude of possible outcomes. On the other hand, the inference engine
based on backward chaining, starts from the desired goal that a particular run of the expert
system has to solve. The production rules in the knowledge base decompose the given goal(s)
into several subgoals, each of them dependent on other subgoals or on certain facts being true.
This kind of problem-solving strategy is most suitable for the diagnosis of problems (e.g. medical
diagnosis) or generally for problems where the desired conclusjons do not differ much in their

line between both approaches, as any kind of knowledge can be implemented with greater or
lesser difficulty with any one of them.

CANOEXP system

The CanoExp program is a first version of an expert system which collects practical knowledge
related to the appropriate use of MGA methods in ecological research. The Fig. 1 displays the
general structure of the current version of the CanoExp program.
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with the location of the data files to be used in the analysis, as the system is build with the
assumption that it will be consulted only after the source data were made available.

measured on the same scale - €.8. percentage cover). Based on that, the system runs an

.exploratory run of a MGA to check the beta-diversity in the primary data set and based on the

results, it decides about the species response mode] which determines the type of MGA (linear
Vvs. unimodal).

Module ANALCHOTI finalizes the choices needed to run the MGA with the program CANOCO
(namely, to generate a response file of the CON type - see ter Braak, 1987). The choices include
use of detrending, the method of scaling ordination scores, downweighting the occurrences of
rare species etc.

will be incorporated. This will enable iterative problem solving, with possible returns to the
earlier phases of data analysis selection and with employing parallel, complementary strategies of
looking at the particular research problem.

Integration with other tools

The described expert system should make user's life easier, not more difficult with having to run
another piece of software. Therefore, CanoExp should integrate transparently with the future
Windows version of CANOCO. This version of CANOCO will allow to select the options for
a MGA analysis in a similar, but more user-friendly way than is used by CANOCO version 3.1.
The CanoExp integration would allow selection of default options based on the properties of the
data to be analysed and on the answers of the user to few non-statistical questions.

Further integration aims at employing the knowledge about the research problem, gained
during the CanoExp session, in advising user on the appropriate ways of visualizing the
ordination results. This field is also Very appropriate for casting into expert systems, as there are
many pieces of shallow knowledge (“rules of thumb") relating to the quality of ordination
diagrams, to the selection of variables to be displayed in the ordination diagram, to the ways of
illustrating particular aspects of the data or addressing particular research problem, etc.
Consequently, the CanoExp shall integrate smoothly with the future version of the program
CanoDraw (Smilauer, 1992).

Technical aspects and Juture developments




The expert system CanoExp is cumently implemented so that all the domain-specific
knowledge is represented in authoritative form. Nevertheless, the implementation would be more
realistic with the following two types of extensions:

* the expertise about the use of MGA methods operates with somewhat inexact terms. A typical
example is the decision between linear response- and unimodal response-type methods. This
might be based on the range of the first ordination axis for a trial run of DCA (ter Braak et
Prentice, 1988): there is not clear-cut threshold of the length of the gradient represented by
the first ordination axis beyond which the linear model is entirely inappropriate. The rule
would be formulated in terms like
IF the beta-diversity of axis 1 is not too-high THEN use linear model
Such in-precise, but more real-life formulations are supported by the theory of linguistic
variables (Zadeh 1979) and implemented e.g. in the F uzzyCLIPS extension of the CLIPS 6.0
system (Orchard 1994).

 beside the inexactness of many terms in the domain of MGA, there is also some uncertainty
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