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Summary. The problems of the measurement of variation and
the selection of appropriate spatial and temporal units of obser-
vation are discussed. Besides theoretical considerations, the per-
formance of variability measures in data on annual catches of
noctuid moths was assessed.

Any measure of variability is potentially biased by its depend-
ence on mean population size. The crucial role of dependence of
variance on the mean is indicated. Taylor’s power law is not a
good model when the population mean is low. The potential bias
is large when the population mean is small; in real data, the
dependence of SD[log(N+1)], CV and Lloyd’s index was weak
when the mean annual catch was greater than 5 individuals.
Lloyd’s index was the least dependent on the mean. There is no
single appropriate spatial or temporal scale for the analysis of
variability. Specific scales are appropriate to specific questions.
Multiple scale pattern analyses of time series and transects or
grids are informative.

Many ecological theories include hypotheses about the
relation of population variability in space and time to
the life history traits of species or the successional age of
communities (e.g. MacArthur and Wilson 1967, Pianka
1970, Whittaker and Goodman 1979). McArdle et al.
(1990) and McArdle and Gaston (1992) have shown that
many studies could be seriously biased by difficulties in
measuring this variability. Their arguments are based
on the assumption that SD of log(N) is the appropriate
measure of population variability. According to them,
measure is unbiased, when it is a good substitute for SD
of log(N).

More particularly, these authors have shown that the
most commonly used measure of temporal variability,
SD of log(N+1), is seriously biased, and that the bias is
especially strong when the population mean is less than
50 individuals. They recommend the general use of the
coefficient of variation (CV), which is a good substitute
for SD of log(N): “The problem of the +1 bias can be
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easily overcome by recourse to an alternative measure
of variability, namely CV using untransformed data”
(McArdle et al. 1990). Conversely, use of SD of
log(N+1) should be avoided, because “... even in situa-
tions where the true variability of the system actually
decreases, SD log(N+1) can show positive correlation
[with the mean]” (McArdle and Gaston 1992). How-
ever, what is the “true variability” of the system? I do
not know a better answer than that it depends on our
definition.

Some features and difficulties are common for mea-
suring variation in population size in both space and
time. Description of spatial variability has been the
work mainly of plant ecologists (see Greigh Smith 1952,
Kershaw 1973a), while variation in time is more the
concern of animal ecologists (e.g. Taylor 1961). This is
not to say that plant ecologists do not take changes in
time into account (they do, but pay attention mainly
to directional changes), or that zoologists do not con-
sider spatial variability (they do, but usually not with
methods developed by plant ecologists). In fact, many
of the problems of analyzing variation in time series in
zoological data discussed by McArdle et al. (1990) are
analogical to those solved by Pielou (1969, ch. 8) and
Hill (1973), analyzing variation in space in botanical
data.

The main problems of measuring variability in space
and time are:

1. How to quantify variation when the mean and var-
iance of the population (measured over either space
or time) are not independent. There is no simple and
general method of standardizing variance.

2. Selection of the size of the spatial and/or temporal
unit.
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The aim of this paper is to review some methods used
for measuring temporal and spatial variability and their
relationship to Taylor’s power law, and to provide rec-
ommendations for empirical studies. Besides theoretical
considerations, 1 analyze the performance of selected
variability measures using yearly light trap catches of
noctuid moths. Finally, I show that a combination of
methods used in plant and animal ecology can help to
resolve the problem of measuring spatial and temporal
variability on various scales.

Dependence of variation in population
size on the mean

In this section, the problem of the dependence of vari-
ous variability measures on the mean is discussed. The
problems of selecting the size of spatial and temporal
units, and of using information about the spatial and
temporal relationships of these units, are discussed in
the next section.

Current methods

Many different indices are used to measure variation in
population size. Those used for variation in time are
reviewed by McArdle et al. (1990); the two measures
used most often are (1) variance or standard deviation
(SD) of log (or log(N+1)) transformed data and the
measures derived from SD of log(N), and (2) coefficient
of variation (CV). It should be noted that most data sets
on the abundance of species contain zeros and, con-
sequently, the log(N+1) transformation is used. If
ecologists speak about log-transformed data, they often
mean the log(N+1) transformation (although the dif-
ference between results based on log(N) and log(N+1)
transformed data is often spectacular). Most other co-
efficients could be expressed using one of the above
(e.g. Stability index of Wolda 1983).

The common measures used to describe spatial vari-
ability are discussed in many textbooks and papers, as
indices of clumping, or of aggregation, or intensity of
spatial pattern (e.g. Pielou 1969, Kershaw 1973b, Hill
1973, Ludwig and Reynolds 1988). Those more often
used are the variance:mean ratio (s%%) and Lloyd’s in-
dex of patchiness (Lloyd 1967) (i.e. L =1+ (s* — £)/2),
see Pielou (1969). Lloyd’s index is equivalent to the
Hill’s intensity of spatial pattern (Hill 1973) and mo-
ment estimate of negative binomial k.

Another index of aggregation is that of Green (1966).
It is defined as

-1

n—1

where n is the total number of individuals in the sample
(sum of individuals in all the sampling units). This index
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is highly recommended by Ludwig and Reynolds (1988:
29). Unfortunately, samples from the same population
with differing numbers of sampling units will yield dif-
ferent values for the index (s* and % do not change
systematically with an increase in the number of sam-
pling units, while n increases steadily); consequently,
this index should not be used.

In both spatial and temporal variability, the fit of
the data to some distribution (usually Poisson, negative
binomial or Neyman A), and the values of fitted
parameters describe variability. Note that the negative
binomial and Neyman distributions are generalized
Poisson distributions, and consequently should by defi-
nition fit the data at least as well as the Poisson distribu-
tion (if a good method is used for distribution fitting),
without suggesting ‘a tendency toward some aggrega-
tion; (as in Ludwig and Reynolds 1988).

Plant ecologists measuring spatial variability usually
agree that variance can be standardized (by the mean)
in various ways, none of which can be preferred a priori
(see Pielou 1969). Most often, the standardization as-
sumes random thinning (i.e., a process where each indi-
vidual has the same probability of dying) as a yardstick
neutral process. In this case the relationship between
variance and mean is

$ =&+ i, (1)

where ¢ is a parameter determined by the initial condi-
tions. Similarly, this variance-mean relationship could
be derived for variations in time (e.g. Routledge and
Swartz 1991). Taking Eq. 1 as a yardstick, Lloyd’s index
and the reciprocal of £ are independent of the mean, the
variance:mean ratio has a highly positive correlation to
the mean, CV and SD of log(N) are negatively corre-
lated, and the relation of SD of log(N+1) with the mean
is humped (rapid increase and then very slow decrease).
Standardization based on Eq. 1 has some advantages
(see Hill 1973) which are usually considered useful but
not necessarily the only ones possible. Similarly, Bliss
(1971) concluded that “When comparing negative bino-
mial distributions of the same species, some ecological
series could be fitted with a common k, but in others,
I/k decreases inversely as the Vmean”. Nevertheless,

. the variance:mean ratio has a marked dependence on

the mean under any feasible assumption and, conse-
quently, is not useful for comparative studies. I will
therefore consider further only CV, SD of log(N+1)
and Lloyd’s index.

Evaluating the variability of animal populations over
time, Taylor (1961) has shown that the relationship be-
tween variance and mean can be expressed by the
power relationship (“Taylor’s power law”), i.e. 5 = ax’,
where 5% and ¥ are variance and mean, respectively, and
a and b are parameters. The relationship is usually
determined by fitting a linear function to log-log trans-
formed data. (The statistical analysis is further compli-
cated by the fact that neither variable is error-free. In
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this paper, I have used the ordinary least square regres-
sion, which differs somewhat from geometric mean re-
gression, though not enough to influence conclusions.)
The power function was developed to describe the rela-
tionship of variance and the mean for populations of the
same species in time and in space (Taylor et al. 1978,
1980), but may be applied just as well to the relationship
between variance and the mean of various species in
space (Chalupsky and Lep3 1985) and in time (Kempton
and Taylor 1979). One of the reasons for the use of SD
of log(N) is that it is independent of the mean, when
Taylor’s power law applies and the b value equals 2.
Nevertheless, the performance of Taylor’s power law at
low mean population densities is strange. With a de-
crease in the mean (particularly when % <1), the pre-
dicted value of variance becomes lower not only than
the mean, indicating some degree of regularity, but also
lower than the theoretical minimum (where each sam-
pling unit either contains one individual or is empty).
Consequently, Taylor’s power law is not a good model
for populations with low densities. (See Routledge
and Swartz 1991 for precise formulas and further
references.)

If Taylor’s power law with b=2 holds, SD of
log(N+1) is positively correlated with the mean (pro-
nounced for all populations with ¥ < 50), the CV and
SD of log(N) are independent of the mean (McArdle et
al. 1990), and Lloyd’s index increases slightly with the
mean (at high mean values it converges to 1+ CV?). As
there are some sampling problems with the coefficient
of variation, SD of log(N) is often considered the best
theoretical measure, but its applicability is constrained
by the presence of zeros. (The problem of zeros is
further complicated by the existence of ‘true’ and *ap-
parent’ zeros. In a sample from a community, that is,
not a census — a zero could indicate either low popula-
tion density or complete absence.) Nevertheless, SD of
log(N) and CV are independent of the mean if, and only
if, Taylor’s power law holds and b =2, which need not
be the case. (Consequently, taking the SD of log(N) as a
yardstick produces the same results as would evaluating
the measures on the assumption that Taylor’s power law
with b =2 holds.) At low population densities, SD of
log(N) is not applicable because of zeroes, and CV is
expected to be positively biased because the variance
must be higher than that predicted by Taylor’s power
law. Indeed, if ¥ <1, then CV =V(1 — x)/x (derived by
simple bookkeeping from formulas in Routledge and
Swartz 1991). For example, for ¥<0.5, CV has to be
greater than one (which is more than the majority of
species exhibits in Spitzer and Lep§ 1988).

Recently, Yamamura (1990) constructed a model that
gives rise to the power curve relationship between mean
and variance by splitting colonies with increasing num-
bers of individuals in each colony. Models leading to
other functional forms of dependence could also be
constructed. It should be noted that the power curve is
used in biology for various purposes, e.g. to relate the
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number of species to the area or the size of various parts
of a body in allometric relations (Gould 1971, 1979).
The frequent use of the power function probably re-
flects the ability of a log-log transformation to linearize
monotonous relationships without inflection. Thus the
power curve is not specific to the relationship of
variance and mean. In the relationship of variance and
mean, the value of b changes from case to case; even
though b often equals 2, it need not be necessarily so.
The simplest way to construct a set of samples that
conform to the power law with b=2 is to take one
sample and generate the others by simply multiplying all
the values of the original sample by a constant, i.e. with
each new sample having its own constant (it could be
interpreted as density independent changes in popula-
tion size). All samples will have the same CV, and SD
of log(N), and will conform exactly s*> = a.%>. From this
point of view, there is the same amount of variation in
series 1, 2, 4, 1 as in series 10, 20, 40, 10, as follows from
the use of CV and SD of log(N). Taking into account the
stochastic nature of the process (due to the integer
nature of the counts, the change from 1 to 2 is the
smallest possible change, whereas that from 10 to 20 is
not), the first series is more likely to appear simply as a
chance event than the second series (as follows from
using Lloyd’s index). Clearly, what is the null model of
variance mean relationship and which measure of aggre-
gation is independent of the mean depends on our defi-
nition of the neutral process. Correspondingly, if counts
are converted to densities (as in Thomas 1991), CV and
SD of log(N) do not change, while Lloyd’s index and
SD of log(N+1) do change.

It should be noted that the power curve fits well the
relationship between variance and mean in the course of
random thinning (Eq. 1). The value of b is between 1
and 2, close to 1 when ¢ is small and values of ¥ are also
small, and close to 2 in the reverse case. For example, if
we take ¢ =2 in Eq. 1 and fit the relationship for all £
from 1 to 100 in steps of 1 by linear regression after the
log-log transformation, we get b = 1.92, with a very high
correlation coefficient r=0.9996. (The fact that the
value of b is close to 2 and that the correlation is high
suggests that, for reasonably abundant species, the dif-
ference in results obtained using CV and Lloyd’s index
should be small.) If we fit the same relationship for all
X between 0.1 and 4, in steps of 0.1, then b=1.48
(r=10.9968). The fact that it is difficult to distinguish
regression by the power curve from polynomial regres-
sion was noted by Taylor (1971).

Those considerations suggest that CV should be nega-
tively, and SD of log(N+1) positively, correlated with
the mean at low values of the mean.

Analysis of light trap data

The dependence of variability measures on the mean
was analyzed within two extended data sets used by
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Table 1. The correlation (r) of variability measures with the mean annual catch, mutual correlations of variability measures, and
estimate of b in Taylor’s power curve, as depend on the threshold (i.e. the minimum mean annual catch included in the analysis).
no. sp. — number of species in the analysis, X — mean annual catch, cv — coefficient of variation, sdl - standard deviation of

log(N+1) transformed data, LI — Lloyd’s index of patchiness.

Threshold no. sp. r (X, cv) r (X, sdl) r(% L)  r(cv,sdl) r(cv,Ll) r(sdl, Ll) b

Ruderal site

no 216 —0.752 0.837 0.108 —0.618 0.178 0.265 1.638
1 ' 138 —0.367 0.466 =0.137 0.195 0.925 0.246 1.799
3 99 -0.273 0.149 —0.108 0.531 0.968 0.530 1.827
5 78 —0.220 0.005 —0.096 0.597 0.974 0.556 1.839

10 57 —=0.091 —0.092 0.009 0.682 0.973 0.610 1.899

20 35 0.047 =0.059 0.096 0.711 0.976 0.614 2.007

Forest site

no 174 —0.757 0.571 0.323 —0.290 —(0.008 0.672 1.564
1 123 —0.404 0.084 —(0.161 0.613 0.931 0.620 1.710
3 90 —0.234 —0.052 =0.107 0.800 0.960 0.731 1.799
5 77 —0.181 —=0.073 —-0.111 0.823 0.968 0.733 1.840

10 52 —0.288 —0.241 -0.228 0.824 0.969 0.732 1.713

20 31 —0.3406 —0.346 -0.287 0.881 0.976 0.844 1.648

Rejméanek and Spitzer (1982) and Spitzer and Lep$
(1988). Detailed site descriptions are given by the
authors: one site was a mixture of agroecosystems and
ruderals and will be referred to as ruderal; the other was
a natural alder forest, referred to as ‘forest’. Both the
localities are close to Ceské Budé&jovice, South Bohe-
mia, Czech Republic. The ruderal data set consists of a
22-year series of annual light trap catches of 216 noctuid
moth species, and the forest data set, of 8 yearly catches
of 174 species. The dependency of the variance on the
mean, the correlation coefficients of CV, of SD of log

7
6-
+
5-
+ 4
4 F
™ Y aal
s :
~ 2r +
=T1)
S i
ol +
_1- +
-2 " n . . .

log(mean)

Fig. 1. The relationship between mean annual catch and var-
iance in the ruderal site. The straight line corresponds to fitted
Taylor's power law, the curve to the Eq. (1) corresponding to
the random dying.
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(N+1) and of the Lloyd’s index (L) with the logarithm
of the mean, as well as the correlation coefficients
among various measures of variability, were calculated.
In both data sets, the analysis of the entire data set was
then repeated for species which exceeded some thresh-
old average annual catch (see Table 1).

Taylor’s power law fits well the ruderal data set, with
b=1.638 and r=10.985. Nevertheless, increasing the
threshold increases b, which reaches a value of 2 for
species with a mean annual catch over 20. This suggests
that the relationship is not perfectly linearized by a
log-log transformation (Fig. 1). In particular, species
with a low mean annual catch had higher variance than
was predicted by the relationship derived for species
with higher means. (A similar situation hold for the data
of Chalupsky and Lep$ 1985, Fig. 3., on spatial vari-
ability of enchytraeids in soil.) This corresponds to the
theoretical consideration that, at low means, Taylor’s
power law underestimates variance. Equation 1 fits bet-
ter, although there only one parameter is estimated,
compared to the two parameters of Taylor’s power law.
Likewise, the relationship for the forest site is not
perfectly linearized by log-log transformation, and the
values of variance for the least abundant species are
higher than are predicted by the power law. As in the
ruderal site, the estimate of b in the power law depends
on the threshold value. The value of b is lower in the
forest than in the ruderal site, and reaches its maximum
when the threshold is 5, decreasing with further increase
in the threshold; in all subsets except that with threshold
5, the b values are significantly lower than 2 (P <0.05).
(Note that the multiple inference is made for various
subsets of the same data set, and thus the probability of
Type I error is 0.05 for each particular test.)

Comparison of the two data sets (Fig. 2, Table 1)
shows several striking features. At low population
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Fig. 2. The relationship
between mean annual catch
and measures of population
variability in the ruderal and
forest sites. Species with
mean annual catch <0.1
(five species in the ruderal
site) are not displayed.

means, CV is much higher than in the rest of the set,
and is negatively correlated with the mean and SD of
log(N+1) is much lower and is positively correlated
with the mean. Consequently, there is a strong negative
correlation between SD of log(N+1) and CV within the
whole data set. These phenomena accordingly appear in
both data sets, and were predicted by theoretical analy-
sis as inherent features of the variability measures. Con-
sequently, there is no specifically biological mechanism
to be explained behind this increase/decrease. McArdle
and Gaston (1992), discussing the problem of variability
and rarity concluded: “Thus, when the same study
shows that variability, measured as SD log(N+1) in-
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creases with the mean but when measured as CV it
decreases with the mean we have no hesitation in saying
that the CV is more likely to be correct.” On the con-
trary, my conclusion is that both trends could easily be
spurious correlations. Lloyd’s index does not show any
such bias. Excluding very rare species, all the measures
examined are reasonably well-correlated, and probably
express similar features of variation in both data sets.
In the ruderal habitat, the dependence of variability
on the mean is negligible when rare species are ex-
cluded. On the contrary, in the forest a slight but signif-
icant decrease of variability with an increasing mean is
demonstrated for common species by all three indices
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(the higher threshold, the closer the correlation). The
difference between the ruderal and the forest site data
sets corresponds to the difference in b values of var-
iance-mean relationship, and probably results from the
difference in life history strategies of the species abun-
dant in these two sites (Spitzer and Leps 1988). On the
ruderal site, the mean annual catch is positively corre-
lated with the population growth rate (estimated
independently from female fecundity), whereas in the
forest this correlation is negative; the ‘r-strategists’ are
more abundant in the ruderal site, the ‘K-strategists’
more abundant in the forest. As all the variability mea-
sures are positively correlated with the population
growth rate, the above-mentioned difference could be
explained by the difference in prevailing life history
strategy. Note that the pattern of decreasing variability
with increasing abundance in the forest was shown con-
cordantly by all the three indices and has a feasible
ecological explanation.

The between-species variance-mean relationship de-
pends on the habitat type and on the set of populations
under investigation. A similar rationale could be given
for the within-species variance-mean relationship: it de-
pends not only on the species, but also on the set of
habitats investigated. There is no variance-mean rela-
tionship characteristic for a species per se (i.e. inde-
pendent of the set of habitats investigated). Both the
differences in species abundance as well as in species
variability in various habitats are influenced by the dif-
ferences between habitats.

Recommendation for applications

Population variability expressed as a single number is a
simplification useful for comparing populations or hab-
itats within a data set. The variance—mean relationship
is a useful way of describing the relationships within
such a data set. Correlations are usually sought between
the measure of variability and some characteristic of a
species or its habitat.

A very simple pragmatic solution, used by Rejmének
and Spitzer (1982), is to check the data for the depend-
ence of the coefficient of variation on the mean popula-
tion density. If there is effectively no such dependence
for species with a mean annual catch over y individuals,
then these rarer species (catch <y) can be excluded
from the analysis; y=5 in Rejmanek and Spitzer
(1982). This is reasonable also because of the low reli-
ability of any estimate of the population size of a rare
species. (In rare species, the error in the population size
estimate might influence the variability measure more
than the variation itself.) Similarly, Spitzer and Lep$
(1988) checked the independence of variability mea-
sures from the mean within the data set under con-
sideration prior to further analyses. Wolda (1983) for
similar reasons omitted from his analyses all the popula-
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tions for which the mean of the natural log of their
abundance was smaller than 0.6.

Results based on all the measures could potentially be
confounded by dependence on the mean. In principle,
there are two possibilities — either we assume that one of
the measures is not biased and expresses true vari-
ability, and use it; or we accept that any measure is
potentially biased and compare results based on various
measures. | prefer the second possibility. The spurious
correlation of CV and SD of log(N+1) with the mean is
usually of opposite sign. This demonstrates that some
species characteristic could hardly be positively corre-
lated with both CV and SD of log(N+1) due to the
dependence of the variability measure on the mean. For
example, Spitzer and Lep$ (1988, Table 4) demon-
strated that geographic range and population growth
rate are significantly positively correlated with both CV
and SD of log(N+1). Although this is just a correlation,
it is reasonable to expect some biological mechanisms to
explain this correlation, as it was done in the paper.

If a dependence is indeed found, one can use the
mean density as a covariable in a regression analysis or
in an ANCOVA of population variability coefficients. A
similar possibility is to calculate the regression of a
variability measure, linear or nonlinear, on the popula-
tion density, and use the residuals as adjusted variability
measures. Similar idea was suggested by Taylor (1971:
376): ‘...the deviation of the points, each of which
represents a population, from the line, which represents
the species norm, is presumably a measure of the local
environmental effect on disposition’. Similarly, the de-
viations of points representing species from a line repre-
senting a habitat norm could each be considered as a
characteristic of a species.

Temporal and spatial scale

The methods discussed in the previous section are based
on a single fixed sampling unit size, and ignore the
spatial or temporal arrangement of these units. It has
been demonstrated many times that the degree of spa-
tial pattern intensity or aggregation depends on the size
of a sampling unit. In classical ‘pattern analysis’ (Greigh
Smith 1952, Kershaw 1973a), the basic sampling units,
located in a transect or in a grid, are blocked step by
step, and the dependence of pattern intensity on the
block size is studied; in this way, the spatial dimension
of aggregations is determined. These methods are com-
monly used in quantitative plant ecology; the literature
is extensive (see Leps 1990 for review and references).
It is generally accepted that there is no single appro-
priate spatial sampling scale.

For temporal variation it is often accepted that the
appropriate sampling scale is generation time (e.g.
McArdle et al. 1990, Connell and Sousa 1983). How-
ever, this approach presents some problems. The first is
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practical: for polyvoltine species with overlapping
generations it is not always feasible to distinguish par-
ticular generations. The other problems are conceptual.
For instance, from the point of view of the impact of a
species on an ecosystem, it is less important whether the
species has one or several generations per year than
how much it fluctuates in abundance between years.
Generation time is difficult to apply as an appropriate
unit to organisms with complicated life cycles (e.g.
aphids with many parthenogenetic generations, but
relatively regular yearly cycles). Moreover, in ecosys-
tems species with differing generation times interact,
and as a result the variability in population size could
exhibit some phenomena on a time scale different from
generation time. Although from the viewpoint of
population dynamics generation time is perhaps the ap-
propriate unit, population behaviour could show some
longer term phenomena (as cycles over several genera-
tions, trends). When only mean and variance are used,
such information is lost.

Time series data are similar to transect data. For the
pattern analysis of transect data, the same mathematical
methods were used as in time series analysis (Yarranton
1969). Unfortunately, the majority of time series avail-
able are too short for time series analysis techniques. As
a rough alternative, some of the methods developed in
spatial pattern analysis could be used. One simple possi-
bility is to replace the variance by ‘local variance’ or
‘two term variance’ (Hill 1973), based on the mean
square of the difference between neighbouring values,
i.e. the average of (x; — x;,,)?, which reflects the year to
year fluctuation, and is far less influenced than the
variance by the trend (systematic increase or decrease
of species abundance over time or through the transect)
and by the size of a sample (i.e., length of the time
series or transect). Hill’'s method also enables us to
detect longer term phenomena by blocking sample
units. If the value of ordinary variance or a variability
measure based on it increases systematically with the
increasing length of a time series (as demonstrated by
Hanski 1990), the data quite probably reveals a trend.
Although other explanations exist (see Pimm and Red-
fearn 1988, McArdle 1989), a trend is usually the sim-
plest and the most feasible, particularly when the time
series is long. In many cases the time series are too short
to detect cyclic phenomena of longer periodicity; never-
theless, random and directional changes can always be
distinguished (see Wolda et al. 1992). If we ignore the
trend, we get high values of all variability indices for
species with small year to year changes, but steadily
decreasing (increasing) in population size (the longer
the time series, the higher the variability indices).

The interaction between temporal and spatial scales
of variation is also interesting, containing important
biological information. For example, in the context of r-
and K-selection theory it was predicted that r-strategists
fluctuate more than K-strategists. Spitzer et al. (1984)
have indeed shown that variability in moth population
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size at a single locality is positively correlated with po-
tential population growth rate. Nevertheless, this is not
necessarily so when summarized over many localities.
For example, pest species, which are usually r-strate-
gists, might exhibit asynchronous outbreaks caused by
local events which result in a relatively stable total
population size. The relatively small but synchronized
local fluctuations of K-strategists might result in larger
fluctuations in total size.

Given available time series from many locations (an
unfortunately rare phenomenon), it is possible to carry
out more informative analyses than simple plotting of
spatial and temporal variance-mean graphs. In partic-
ular, it is possible to test explicitly-stated hypotheses,
e.g. whether fluctuations, and particularly outbreaks,
are synchronized or not, or whether optimum habitats
are temporarily stable (see Thomas 1991). If it seems
that there are some refugia where species could survive
during bad years, it is reasonable to search for the
characteristics of refugia (which habitat type) and of
bad years.

Conclusions

1. There is no single best way of standardizing variance
which would yield a measure of variability in time or
space independent of the mean. Any measure is
potentially biased. The variance and mean are
mutually dependent, but the functional form differs
from data set to data set. The applicability of
Taylor’s power law is limited, particularly for rare
species.

The variance:mean ratio is positively correlated
with the mean and the value of Green’s index de-
pends on the sample size; use of these measures is
not recommended. SD of log(N) is not applicable if
the data set contains zeroes (as the majority of data
sets do). Lloyd’s index, CV and SD of log(N+1)
seem to be more acceptable. Of those, both the CV
and SD of log(N+1) have some drawbacks, and,
indeed, they show close correlation with the mean at
low population densities, independent of the biolog-
ical character of the data. It is often useful to omit
populations with a mean lower than certain thresh-
old (3 or 5 individuals per year in our data sets).
After this, the dependence of variability on the mean
very often disappears. Should populations with low
means be included, the use of Lloyd’s index seems to
be the only admissible solution. Nevertheless, com-
parison of results based on various variability mea-
sures helps to draw the most unbiased conclusions.

2. Variability depends on the spatial and temporal
scales used. There is no single most appropriate spa-
tial or temporal scale. Multiple scale analysis pro-
vides better insight than analysis on a single scale.

3. Many data sets are either in the form of a spatial
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transect or time series. Particular sampling units are
not entirely independent in this case, but form spa-
tial or time series. Consequently, special statistical
methods, which use information on the spatial or
temporal relationships of particular units, should be
used. Methods used in plant ecology for pattern
analysis are recommended. Trends (directional
changes) or cyclic changes should be distinguished
from random variation.
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