Rozsívky v bentosu Šumavských jezer

MAREK HARTYCH

vedoucí práce: RNDr. Jaromír Lukavský

rok vypracování: 1996

Prohlašuji, že jsem uvedenou práci vypracoval samostatně, pouze s použitím uvedené literatury.

16. května 1996
Obsah:

- Úvod 1
- Geologie 2
- Geomorfologický vývoj 2
- Původ jezer 2
- Podnebí 3
 - Teplota 3
 - Srážky 4
- Hydrochemie 4
- Řasy .. 5
- Lokality 5
- Metody a materiál 6
- Výsledky a diskuze 7
- Soupis druhů 8
- Literatura 9

Příloha:

- Tabule I 12
- Tabule II 13
- Tabule III 14
- Tabule IV 15
- Tabule V 16
- Tabule VI 17
- Mapa a lokality 18
- Přehled druhů v jednotlivých jezerech 19
- Podnebí 21
- Chemismus 22
Úvod

Šumavská příroda je beze sporu jedním z nejrozsáhlejších a nejzachovalejších ekosystémů na území České republiky. Má osobitý ráz a je rozčleněna na řadu širokých hřbetů s plochými temeny. Celé její území bylo modelováno představujícími ledovci, jejichž pozůstatkem jsou glaciální jezera. Šumava je souvisle zalesněna, hlavní dřevinou je smrk, přirozené smrkové a bukové porosty se však vyskytují ojediněle (Žofínský prales a Boubín). Dnešní smrkové porosty pocházejí z 18. a 19. století a byly uměle vysazeny (Chábera 1987).

Pro svou jedinečnost byla Šumava již roku 1963 (27.12.) vyhlášena Chráněnou krajinou oblastí o rozloze 1630 km². O necelych 30 let později (20.3.1991) byl nařízením vlády zřízen na území stávající CHKO národní park Šumava s rozlohou 683,2 km². Po vyhlášení této oblasti za biosférickou rezervaci UNESCO a po navázání užší spolupráce se správou národního parku Bavorský les (SRN), se Národní park Šumava zařadil mezi nejznámější bilaterální velkoplošně chráněná území v Evropě. Mezi perly šumavské přírody patří štěrčina fišť, růž kamenec, myšivka horská, kos horský, rys ostrovid, borovice bělka, bříza zákrala a vrba borůvka; ze vzácných ekosystémů pak zbytky původních porostů (pralesy), slatí a glaciální jezera.

Ta na sebe opět upozornila poté, co se ukázalo, že v důsledku lidské činnosti dochází k acidifikaci sladkovodních ekosystémů (Likens & Bormann 1974; Wright & Henriksen 1978; Psenner & Cetin 1994). Proces acidifikace se tak stal hlavním faktorem ovlivňujícím, a dokonce určujícím, kvalitu vody a tím i biotickou složku jezerních ekosystémů (Henriksen 1980; Charles et al. 1989). Pokusy s umělou acidifikací jezer ukázaly (Schindler et al. 1985; Brezonik et al. 1993), že změna chemismu je doprovázena změnou v druhovém složení fišťoplanktonu a zooplanktonu, což je doloženo i z přehledných studií týkajících se jezer, které se nacházejí v regionech s vysokou hodnotou kyselých depozic (Schindler 1988, 1994). Podobné změny jsou též doloženy z území bývalého Československa, a to jak z Vysokých Teter, tak i ze Šumavy (Stuchlík et al. 1985; Fott et al. 1987, 1992, 1994; Lukavský 1994). Dopad lidské činnosti na kvalitu vod a biotickou složku Šumavských jezer je dobře dokumentován díky velikosti Šumavského jezera a jeho přehledných vodních podmínkách.

Cílem mé práce je doplnit naše znalosti šumavských jezer o přehlednou studii rozsvikových společenstev. Soupis druhů je nezbytným základem pro navazující hodnocení druhové diverzity. Druhým cílem je přinést co nejúcelnější přehled znalostí týkající se jezer Šumavy a Bavorského lesa.
Geologie

Šumava patří k jižní části Českého masívu, zvané „oblast vlávsko-břidlické cievce“ čili moldanubikum, a to jeho šumavské větvi. Je to soubor krystalických břidlic, metamorfovaných většinou hlubině a zčásti středohlubině. Na bavorské straně se šumavské moldanubikum noří podél tektonických liníí pod alpské vnitřní fýšové pásmo.

Geomorfologický vývoj

Geomorfologický vývoj Šumavy zpočátku v křídě na okrajové části českého paraviny mezi alpskou geosynklínou a sníženinami jezer vznikajících Jihočeských kotlů. Odvodňování většiny území však směřovalo k jihovýchodu, nejšíplejší horní Vltavou a souběžnými toky. Předpokládá se, že na modelování Šumavy se více podílely hlubokový vývoj od obou krajů, který se podřizoval výběrové různé tvrdosti hornin, a obnovené staré a nově vzniklé saxonské poruchy. Ty jsou také hovězí v oblastech okrajových než ve vnitřní části pohoří. Jako celek byla Šumava zdižena jak sama ve svých horopisných hranicích, tak jako účastník celkového zvětšení českého masívu v saxonickém období, která vyvrocila nejšíplejší v pleistocénu. Šumava byla v starším pleistocénu pergilační oblastí, s výjimečným karovým zalesněním několika svahových kotlů dnes většinou jezer. Plošné hluboké velké účinky na pronikavě zvětralém povrchu Šumavy měla pleistocenní solifluxní a mrzové zvětrávání. Denudační obmažování vápencových složek vedlo k vývoji potavského a krumlovského, s malými povrchovými i podzemními tvary. Starší nebo pleistocenní výplně zvětralínové tento kras nezachoval ani v povrchových, ani v podzemních dutinách (Kunský 1968).

Původ jezer

Všech pět českých jezer se nacházejí v blízkosti jihovýchodní a jižní hranice ČR. O původu malých jezer uprostřed rozlehlých šumavských lesů v nadmořské výšce 1000 až 1700 m kolovaly dlouhou dobu pochybně až fantastické pověsti. Dokonalost a nápaditost morén u Prášilského jezera, vysoké 10 metrů, byla vysvětlována jako násep postavený starým domorodým mmenem; místní obyvatelé této pověře věřili až do druhé poloviny 19. století (Bayberger 1886). Na základě rozdílů nalezených v druhovém složení zooplanktonu usoudil
Frič, že Plešné (Plöckensteiner) a Roklanské (Rachel) jezero vzniklo ze jiných okolností a v jiném čase než ostatní Šumavské jezera (Frič 1873).

Souvislost mezi ledovým pokryvem a vznikem jezer byla poprvé jasně formulována Parischem (1862). Dnešní názory na založení jsou však převážně založeny na práci Rathsburga (1930), podle kterého se Šumava před více jak 10 000 lety nacházel v periglaciálním regionu, který výrazně založil kompleksem ledovec ve severní Evropě a v Alpách. Ten krátce se v nejvyšších polohách Šumavy a Bavorského lesa zformovalo celkem jedenáct svažových ledovec. Dva ledovec na svazích hory Javor (Grosse Arber) daly vznik Velkém a Malému Javorskému jezeru; další tři se podílely na zformování Roklanského jezera na svahu hory Roklan (Rachel). Další ledovec vyhubily kary pro Prášilské j., jezero Stera (Suchá) Jímka (pod horou Polečně); obdobně vznikla i ostatní jezera: Čertovo, Černé, Plešné a Laka. Dějek ledovec Prášilského a Černého byla 1650 m a 1450 m, proto se část jezer pobývala kolem 900 metrů. Nevykrytá výška morén je Plešného jezera (40 m) se obvykle vysvětluje odloučenou vláknou hrubozrné žuly v periglaciálním, ztvárněním povrchu. Podrobněji se studiem založení Šumavy zabýval Wagner (1897), Kunsky (1933) a Chábera (1975, 1987).

Všechny všechny jery byly vytvářena ledovci a uzavřena čelními morénami, které obsehly i balvanu a objemu větším než 1 m³. Škvíry mezi navrženým materiálem byly postupně zaneseny jeným sedimentem, až nakonec vznikly přirozeně nepropustné hráze schopné zadržet vodu a dávat vznik jezerům. Činnost ledovec je patrná i čes. Nepříkladem pod Prášilským jezerem lze dobře rozpoznat ustupující morén (Kunsky 1933) a ledovcové růhy ve skalnatém podkladu (Pelíšek 1978). U čtyř jzer (Malé a Velké Javorské, Ráchelské a Plešné) byla naměřena největší hloubka v blízkosti čelních morén, kde je skalnaté podloží v kontaktu s polou morén. Na druhou stranu u dalších třech (Černé, Čertovo a Prášilské) byla max. hloubka naměřena u jezerní stěny.

Ledovecových jezer bylo původně deset, ale kar Stera jímky (1100 m.m.m., jihovýchodně od Prášilského j.) a kar na severní svahu Roklanu v nadmořské výšce 1120 m byly zaneseny mohutnou vrstvou sedimentu. Stejný osud čekal i mělké jezero Laka, proto byl sediment roku 1906 vybagrován. Toto jezero bylo podstatně menší, dříve než bylo v 30-tých letech postavena hráz, jak tomu vedečká velké množství pěšek v jižní části jezera (Švambera 1915). Úpravy a zvyšování přirozených hrázi byly provedeny i u ostatních jezer.

Podnebí

Podnebí Šumavy patří k středoevropskému středohorskému typu. Má přechodný ráz mezi klimatem oceáničtým (přimořským) a kontinentálním (vnitrozemským), tj. má poměrně malé roční výkyvy teploty a poměrně vysoké srásky s přibližně stejnoměrným rozložením během celého roku (Kolektiv 1958). Podle klimatického dělení České republiky náleží Šumava k chladné oblasti (mírně chladný a chladný okrsek).

Teplota

Centrální oblast Šumavy patří k nejchladnějším oblastem jižních Čech. Všechna jezera náleží k území, které obepíná roční izoterma 4°C (příměrná teplota). Nejchladnějším měsícem je leden a průměrná teplota -5°C, tato teplota se většinou udrží i v únoru a ještě v březnu se půvětrná teplota pohybuje pod bodem mrazu. Fyzická zima (dny, jejichž půvětrná teplota je nižší nebo se rovna 0°C) začíná koncem října a končí až koncem března či počátkem dubna (Nekovář 1958). V zastíněných lokalitách nad 1000 m nad. výšky se udrží malé sněhové
ostrůvky až do poloviny května a v nich byly nalezeny sněžné řasy (Lukevský 1993). Vegetační období, tj. dny s průměrnou teplotou mírně nad 5°C, začíná kolem 20. dubna (v té době jsou již průměrné teploty na českobudějovickém kolem 10°C), letního vzhledu dosahuje v poslední části července (s teplotami kolem 12-14°C) a končí s příchodem září. To znamená, že plné vegetační období trvá v centrální části Šumavy pouze oce 100 dní (celé vegetační období pak asi 150 dní).

Srážky

V důsledku své polohy jsou srážky na Šumavě rozděleny přibližně rovnoměrně přibližně roku. Listopadové srážky, srážky zimní čtvrtiny a většina srážek říjnových a březnových spadne v podobě sněhů. Průměrný počet dnů se sněhovou pokryvkou je 120 až 150 dní. Průměrná výška sněhové pokryvky se pohybuje mezi 60-100 cm. V arktických a na sníh bohatých zimách však sněhová pokryvka dosahuje tloušťky až 2 m a doba trvání se může prodloužit až na 200 dní. Celkové roční množství srážek se pohybuje mezi 1200-1400 mm (Nekovář 1954, 1957).

Hydrochemie

Také Černé j. bylo koncem minulého století světlejší (XII. - XIII.) než v roce 1936, kdy už mělo sytě zelenou barvu (IX. - X.). Dnes je těžké rozhodnout, do jaké míry se na změně zbarvení tohoto jezera podílelo přečerpávání vody z řeky Úhlavy do jezera (jezero sloužilo jako přečerpávací nádrž pro špičkovou výrobu elektriny, či zda byly příčiny tohoto procesu jiné.

Říkavý

Množství fytoplanktonu, charakterizované koncentrací chlorofyllu a bylo v roce 1980 velmi nízké, většinou kolem 1,5 µg/l (s rozptylem od 0,5 do 5,5 µg/l), a bylo vždy o něco vyšší u hladiny než v hloubce 10-20 m (Růžička et al. 1981). V roce 1979 byl během vegetační sezóny pozorován nevyšší velký nárůst fytoplanktonních druhů. Větší rozvoj je však pravděpodobně limitován nízkými koncentracemi fosforu; nalezené hodnoty se pokládají mezi 0,6-3,3 µg/l u P-Po₄ a mezi 2,3-7,0 µg/l u celkového P (J. Fott et al. 1980).

Lokality

Černé jezero
Je největším jezerem na české straně. Leží na severovýchodním svahu *Jezerní hory* (1343 m. n. m.) zahloubené do svoru. Je odvodňováno do Úhlavy (Severní moře).

Čertové jezero
Leží na jihovýchodním svahu *Jezerní hory* pod 313 m vysokou karovou stěnou. Je těž zahloubený ve svoru; odvodňováno je do Černé (Dunaj, Černé moře).

Plešné jezero
Nachází se na severovýchodním svahu hory *Plechý* (1378 m. n. m.) pod 220 m vysokou žulovou stěnou, v žule je také zahloubeno. Je odvodňováno do *Vltavy* (Severní moře).

Prašlíkůvé jezero
Je situováno na východním svahu hory *Polodník* (1315 m. n. m.) pod 150 m vysokou karovou stěnou. Je zahloubeno v růž ožule a odvodňováno do *Křemelné* (Severní moře).
Laka (Pleso)
Nejmenší z jezer na české straně leží na severovýchodním svahu Debrníku (1336 m n. m.). Je zahloubeno v rulovém karu a odvodňováno do Křemelné (Severní moře).

Klein Arber See
Nejmenší z jezer na německé straně se nachází na severním svahu Malého Javoru (1389 m n. m.). Je zahloubeno v karu-rule a odvodňováno do Rezné (Dunaj, Černé moře).

Grosser Arber See
Největší z jezer na německé straně leží na jihovýchodním svahu Javoru (1457 m n. m.). Stejně jako předchozí je zahloubeno v karu-rule a odvodňováno do Rezné (Dunaj, Černé moře).

Rachelsee
Ze všech jezer nejvýše položené je situováno na severním svahu Roklany (1454 m n. m.). I ono je hloubeno v kar-rule, odvodňováno je do řeky Ilz (Dunaj, Černé moře).

Všechna jezera jsou původem ledoveckého a jsou to hloubená i hrazená ková jezera s pánví vyhloubenou malým karovým ledovcem a zůstávají hrazena čelní morénou. Prozatím jsou ponechávána ze jezera vůzínského stěž. Morény dosahují zjevnou velikosti, v Černém jezeru (svor), u Prášilského jezera jsou zřetelné ústupové morény, z nichž není ani náhled jezera. Největší morénový val leží v rozměru 830 m n. m. (u Černého a M. Javorského) až 1005 m n. m. (u jezera Laka).

Šumavská jezera jsou odvodné. Kromě sládek jsou zásobována trvalými potoky a potoky (Geigenbach u V. Javorského) buď přítoky prameni nebo prostřednictvím průtoku ruzenin ježí neprořezech. Odtok je odvodněný a jezera jsou mlýnem do prameni.

Šumavské jezera jsou typu mírněho pásma: v létě tepléjší voda tvoří vrstvu nad tichou chladnou vodou, v zimě napak. Metamorfon je v červnu v 5 až 12 m hloubce. V létě je povrchová voda až do hloubky 2 nebo 3 m asi o 4°C tepléjší než vodou.

Jezer je zemřívaly v zimě, rozprzněly v dubnu až počátkem května. Toto zemřívaly způsobuje poměrně organickou chudobu jezera. Lesy dosahují hloubky 0,75 m a s přeměněnými vrstvami sněhu až 2,5 m (j. Černé a V. Javorské). Sněh začíná padat v listopadu, poslední v dubnu-květnu (Kunský 1968).

Metody a materiál

(zubním kartáčkem) a vzorky z ponořených větví byly odrůznuty i s částí podkladu. Všechny vzorky byly uloženy do 100 ml PVC lahvi, řádně popsány a odevzány do laboratoře k dalšímu zpracování. Fixace prováděna nebyla, neboť k determinaci rozsivek se využívá rozdílů v morfologii jejich křemičitých schráněk, frustul (Hindák 1978).

V laboratoři byly vzorky vypáleny na podložním skle v přítomnosti H₂O₂ coby silného oxidantního činidla. Po důkladném vypálení byly tekutě upravené vzorky zalit do pleurexu a mikroskopovány. Podrobněji viz Fott (1954).

Celkem bylo k mikroskopii připraveno 110 trvalých preparátů, z toho: Černé 26, Grosse Arber 27, Kleine Arber 15, Laka 4, Plešné 12, Pražské lů a Réchelské 8. O Černo je ježe se všeobecně předpokládá že díky své blízké poloze a stejnému geologickému podloží se jeho flóra a fauna výrazně neliší od Černého jezera. Proto na tomto jezeře odbočky prováděny nebyly.

Výsledky a diskuse

V bentosu šumavských jezer bylo nalezeno 40 druhů rozšivek. Počty pro jednotlivá jezera jsou v tabulce 1.

<table>
<thead>
<tr>
<th>jezero</th>
<th>Černé</th>
<th>Grosse Arber</th>
<th>Klein A.</th>
<th>Laka</th>
<th>Plešné</th>
<th>Pražské</th>
<th>Réchelské</th>
</tr>
</thead>
<tbody>
<tr>
<td>počet druhů</td>
<td>34</td>
<td>26</td>
<td>24</td>
<td>25</td>
<td>22</td>
<td>19</td>
<td>15</td>
</tr>
</tbody>
</table>

Druhově nejbohatším je tedy jezero Černé nejchudším Réchelské.

Pozoruhodný je výskyt druhů, které se považují za indikátory alkaličt a salinních podmínek. Možnost vysvětlení: 1) chybné určení, 2) zavlečení již mrtvých schráněk z lokalit v povodí, 3) nedostatečné znalosti ekologie těchto druhů čili chybné zařazení v tabulce indikátorů. Nejzajímavějším se jeví přítomnost druhů: *Diatoma hiemalis*, *Diatoma tenue*, *Stauroneis anceps*, *Nitzschia obtusa*.

Kvantitativní hodnocení diverzity nebylo možné pro nepřítomnost počtu jednotlivých druhů, to bude náplní další navazující studie.

Pro srovnání výsledů pozorování v entomologických a ostatních mikroorganismů uvádíme výsledky studie, kterou na bavorských jezerech provědli Lukevský et Lederer (in prep.).

<table>
<thead>
<tr>
<th>jezero</th>
<th>Grosser Arber See</th>
<th>Klein Arber See</th>
<th>Réchelské</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bentos</td>
<td>plankton</td>
<td>bentos</td>
</tr>
<tr>
<td>bakterie</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fungi</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Cyanophyta</td>
<td>17</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Chrysophyceae</td>
<td>16</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Bacillariophyceae</td>
<td>14</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Chlorophyta (Zygmem.)</td>
<td>25 (13)</td>
<td>(1)</td>
<td>18 (7)</td>
</tr>
</tbody>
</table>
Soupis druhů a jejich ekologických a indikačních charakteristik

Determinaci rozšvek jsem prováděl za použití literatury: Hladký J. Sladkovodné ríasy
SPN Bratislava 1978
Siemská J. Okrzenky
PWN Warszawa 1964
Kramer & Lenge Bacillariophyceae
G. F. Verlag 1991

Bacillariophyceae

Coccosidiales

Coccosidialesceae
Aulacoceira alpingena (GRUNOW) KRAMMER... horské oligotrof. j.K&L
Aulacoceira lirata (EHRENB.) ROSS ...oligotrofní horské jezera...............K&L
Aulacoceira pflaffiana (REINSCH) KRAMMER ...oligotrofní horská jez...........K&L
Aulacoceira sp.
Melosira distans (EHRENB.) KUTZ. ...acidofilní a frigidofilní druh, x-oH

Naviculales

Achnanthaceae
Achnanthes lanceolata (BREB.) GRUN. ...S
Achnanthes linealis (W. SM.) GRUN. ...H
Achnanthes ploenensis HUST. ...typický pro horské jezera.........................S
Achnanthes sp.

Eunotiaceae
Eunotia bigibba KUTZ. ...horské vody a vlhké skály,x.............................H
Eunotia curvata (KUTZ.) LAGERST... dystrofní vody, x-oH
Eunotia exigua (KUTZ.) RABENH. ...dystrofní vody či vlhký mech..................H
Eunotia monodon EHRENB. ...S
Eunotia valida HUST. ...čisté horské vody a vlhké skályH
Peronia fibula (KUTZ.) ROSS. ...málo hojný druh, v nárostu stoj. vod........H

Fragilariales
Diatoma hiemale (ROTH) HEIB. ...alkalofilní d., rychle tekoucích vod, z..........H
Diatoma sp.
Diatoma tenue A.G. ...alkalofilní druh, v planktonu i litorálu, C-bun........H
Fragilaria sp
Meridion circulare (GREV.) AG. ...acidofilní a frigidofilní druh, x-oH
Tabellaria flocculosa (ROTH) KUTZ. ...stojaté dystrofní vody, x-oH

Naviculaceae
Anomoneis serians (BRÉB.) CL. ...sladkovodní, litorální druhS
Cymbella hebridica (GREG.) GRUN. ...sladkovodní d., známý z KrkonošS
Frustulia rhomboides (EHRENB.) DE TONI ...dystrofní vody, x-oH
Gomphonema cf. parvulum (KUTZ.) KUTZ ekologicky velmi plástický
druh, mélo otilivý na pH, salinitu, seprubitu, proudeníH
Navicula radiosa KUTZ. ... S
Navicula rostellata (KUTZ.) CLEVE ...epipelon s epiliton jezer K&L
Navicula sp.
Neidium iridis (EHRENB.) CL. ...široké ekologické amplitude H
Pinnularia appendiculata (AG.) CLEVE ... S
Pinnularia biceps GREG. ...především v čistých vodách, a H
Pinnularia nobilis (EHRENB.) EHRENB. ...acidofilní druh, v bentosu čistých stojatých vod .. H
Pinnularia gibba GRUN. ...sladkovodní, v bahnitém dne S
Pinnularia cf. viridis (NITZSCH.) EHRENB. ...široké ekologické amplitude... H
Stauroneis aniceps EHRENB. ...hojný především v neutr. až slík. vodách..... H
Synedra sp.
Nitzschioceae
Nitzschia obtusa W. SMITH ...druh známý ze slaných vod H
Nitzschia recta HANTZSCH .. S
Nitzschia sp.
Surirellaceae
Surirella biseratia BRÉB. ...sladkovodní, litorální druh S
Surirella linearis W. SMITH ...druh typický pro čisté vody................. H

Literatura

(1957) : Sněžné poměry jižních Čech. - Sborník Čs. Spol. zeměpisně 62 : 210-228, Praha

SIEMINSKÁ J. (1964) : Bacillariophyceae (Okrzemki). - Państwowe wydawnictwo naukowe, Warszawa, pp. 669

Tabule I

Aulacoseira lirata

Tabellaria flocculosa

10 µm
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Achnanthes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achnanthes lanceolata</td>
<td></td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Achnanthes linearis</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Achnanthes ploenensis</td>
<td></td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Anomoneis serians</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Aulacoseira alpingena</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aulacoseira lirata</td>
<td></td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aulacoseira pfaaffiana</td>
<td></td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Aulacoseira sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cymbella hebridica</td>
<td></td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Diatoma elongatum</td>
<td></td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Diatoma hiemale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diatoma sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eunotia bigibba</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Eunotia exigua</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Eunotia monodon</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Eunotia robusta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eunotia valida ?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fragillaria sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frustulia rhomboides</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gomphonema cf. parvulum</td>
<td></td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Melosira distans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meridion circulare</td>
<td></td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Navicula radiosa</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Navicula sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neidium iridis</td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Nitzschia obtusa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitzschia recta</td>
<td></td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Nitzschia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peronia fibula</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Pinnularia appendiculata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnularia biceps</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pinnularia nobilis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pinnularia gibba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pinnularia cf. viridis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Stauroneis aniceps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Surirella biseriata</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Surirella linearis</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Synedra sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabellaria flocculosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>počet druhů</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>

CT (mg/l) salinita %

Vysvětlivky: R (pH) ... 1 acidobiontní H (salinita) ... 1 < 100 < 0,2 N (příjem dušíku) ... 1 N-autotrof, druh, toleruje nízké koncentrace
2 acidofilní 2 < 500 < 0,9
3 cirkumneutr. 3 500-1000 0,9-1,8
4 alkalofilní 4 1000-5000 1,8-9,0
5 alkalobiontní 6 bez optima

O (kyčlík, požadavky) ... 1 < 100% saturace S (zapobíta) ... 1 oligosaprobní T (třesí) ... 1 oligotrofní
2 < 75% saturace 2 β-mezosaprobní 2 oligo-mezotrofní
3 < 50% saturace 3 α-mezosaprobní 3 mezotrofní
4 < 30% saturace 4 α-mezo/ polysap. 4 mezo-eutrofní
5 < 10% saturace 5 polysaprobní 5 eutrofní
6 bez optima 6 hypetrofní
7 oligo- až eutrofní druh

Můžeme pouze nadějně věřit, že voda je očistěna, a nikdy se nevyskytuje mimo vodní prostředí
2 hlavní výskyt ve vodě, někdy na vlhkých stěnách
3 hlavní výskyt ve vodě, běžně také na vlhkých stanovištích
4 hlavní výskyt na vlhkých či dočasně suchých stanovištích
5 výskyt téměř vždy mimo vodní prostředí
roční průběh teplot

procentuální rozdělení srážek
celkové množství srážek: 1200-1400 mm
Table 2. Chemical characteristics of the surface samples for the Šumava lakes. Mean values (range in parentheses) are given for the sampling period and number of samples (n) as indicated.

<table>
<thead>
<tr>
<th>Lake</th>
<th>Černé</th>
<th>Čertovo</th>
<th>Prášilské</th>
<th>Plešné</th>
<th>Laka</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄-N μg/l</td>
<td>24 (5-46)</td>
<td>36 (9-57)</td>
<td>53 (6-130)</td>
<td>50 (10-150)</td>
<td>5 (<5-9)</td>
</tr>
<tr>
<td>NO₂-N μg/l</td>
<td>(<1-17)</td>
<td>(<1-1)</td>
<td>(<1-1)</td>
<td>(<1-19)</td>
<td>(<1-2)</td>
</tr>
<tr>
<td>NO₃-N μg/l</td>
<td>1056 (908-1230)</td>
<td>694 (490-970)</td>
<td>635 (280-1020)</td>
<td>370 (220-720)</td>
<td>724 (520-1130)</td>
</tr>
<tr>
<td>TON μg/l</td>
<td>178 (130-240)</td>
<td>223 (149-320)</td>
<td>312 (210-450)</td>
<td>311 (245-460)</td>
<td>286 (220-350)</td>
</tr>
<tr>
<td>TP μg/l</td>
<td>4.1 (2.2-6.3)</td>
<td>4.2 (2.5-6.4)</td>
<td>5.0 (4.0-7.2)</td>
<td>8.9 (5.6-13.0)</td>
<td>6.8 (4.2-8.3)</td>
</tr>
<tr>
<td>COD mg/l</td>
<td>3.6 (1.8-7.7)</td>
<td>5.3 (4.3-6.6)</td>
<td>8.9 (5.8-15.8)</td>
<td>7.7 (4.5-11.8)</td>
<td>8.7 (6.4-11.8)</td>
</tr>
<tr>
<td>DOC mg/l</td>
<td>1.25 (0.67-1.8)</td>
<td>1.76 (1.42-2.1)</td>
<td>3.62 (2.7-4.5)</td>
<td>2.53 (1.34-4.6)</td>
<td>3.36 (3.0-3.6)</td>
</tr>
<tr>
<td>Chl a μg/l</td>
<td>2.31 (0.30-3.7)</td>
<td>(<3.0, 3.25)</td>
<td>3.39 (0.4-7.2)</td>
<td>4.90 (1.5-12.1)</td>
<td>(<1.2, 3.4)</td>
</tr>
<tr>
<td>pH</td>
<td>(4.45-4.87)</td>
<td>(4.05-4.50)</td>
<td>(4.60-4.89)</td>
<td>(4.53-4.99)</td>
<td>(4.86-5.80)</td>
</tr>
<tr>
<td>SO₄²⁻ mg/l</td>
<td>6.0 (5.4-7.4)</td>
<td>7.7 (6.7-9.3)</td>
<td>4.3 (3.2-6.5)</td>
<td>7.3 (6.6-8.6)</td>
<td>2.23</td>
</tr>
<tr>
<td>Cl⁻ μg/l</td>
<td>830 (760-940)</td>
<td>800 (690-940)</td>
<td>690 (630-720)</td>
<td>630 (550-710)</td>
<td>830 (810-840)</td>
</tr>
<tr>
<td>Ca²⁺ μg/l</td>
<td>950 (730-1120)</td>
<td>680 (440-780)</td>
<td>690 (500-870)</td>
<td>1180 (910-1580)</td>
<td>860 (770-920)</td>
</tr>
<tr>
<td>Mg²⁺ μg/l</td>
<td>550 (440-650)</td>
<td>440 (300-520)</td>
<td>380 (270-460)</td>
<td>270 (130-390)</td>
<td>460 (370-500)</td>
</tr>
<tr>
<td>Na⁺ μg/l</td>
<td>670 (770-960)</td>
<td>690 (590-810)</td>
<td>620 (510-720)</td>
<td>850 (220-1110)</td>
<td>1220 (1150-1260)</td>
</tr>
<tr>
<td>K⁺ μg/l</td>
<td>590 (420-750)</td>
<td>430 (300-500)</td>
<td>380 (220-500)</td>
<td>430 (230-700)</td>
<td>350 (190-500)</td>
</tr>
<tr>
<td>Altot μg/l</td>
<td>570 (340-680)</td>
<td>650 (550-730)</td>
<td>360 (280-500)</td>
<td>730 (550-970)</td>
<td>120 (90-150)</td>
</tr>
</tbody>
</table>