Srovnání pylového záznamu a vegetace na vybraných lokalitách v Čechách
(bakalářská práce)

Ivana Adámková

Vedoucí práce: Mgr. Jan Novák PhD.

2006

Anotace:
The aim of the study was to compare recent pollen assemblages and vegetation on three sites in different parts of Bohemia. Possible factors which could influence pollen presence or absence in moss traps were discussed.

Prohlašuji, že tuto práci jsem vypracovala sama pouze s použitím citované literatury.

České Budějovice 10.5.2006

...

Ivana Adámková
Obsah

1. Úvod...1
2. Současné a historické analogy..3
 2.1 Současné analogy...3
 2.2 Historické analogy...5
3. Metodika...8
 3.1 Studované lokality...8
 3.1.1 Černiš u Českých Budějovic...........................8
 3.1.2 Velanská cesta u Českých Velenic....................8
 3.1.3 Vladař u Žlutic...9
 3.2 Vegetační mapování...10
 3.3 Mechové pasti...10
 3.4 Mapové podklady...10
 3.5 Vyhodnocení..11
4. Výsledky..12
 4.1 Černiš..12
 4.1.1 Vegetace..12
 4.1.2 Vyhodnocení pylového vzorku........................12
 4.1.3 Srovnání pylového vzorku a vegetace.................13
 4.2 Velanská cesta...15
 4.2.1 Vegetace..15
 4.2.2 Vyhodnocení pylového vzorku........................15
 4.2.3 Srovnání pylového vzorku a vegetace.................15
 4.3 Vladař..17
 4.3.1 Vegetace..17
 4.3.2 Vyhodnocení pylového vzorku........................17
 4.3.3 Srovnání pylového vzorku a vegetace.................18
 4.4 Porovnání lokalit...20
5. Diskuse...21
6. Literatura...23
7. Přílohy...27
1. Úvod

Ve střední Evropě netče, zhruba od 4000 let před Kristem, zanedbat vliv člověka na vývoj vegetace. Lidská činnost se začala nejprve projevovat v úrodných sprašových oblastech nižších poloh a souvisela s neolitickým zemědělstvím. Nepřímo podporila šíření světlomilných druhů, které přežily jako reliky od konce doby ledové a také nových druhů šířicích se z jižních stej spolu se zemědělstvím. Naopak nejpozději se hospodářská činnost člověka projevila v horských a podhorských oblastech, kde začala až s kolonizací ve 13. století. (Jankovská 1997) Tlak člověka na vývoj vegetačních formací postupně vzrůstal a zásadním způsobem změnil vzhled krajin i složení vegetace.

Dnes nám uchované rostlinné fosilie mohou poskytnout odpovědi na celou řadu otázek, týkajících se nejen přímo vegetace v minulosti, ale i oblastí s vývojem vegetace nepřímo souvisejících.

Tím by ovšem byly možnosti pylové analýzy do velké míry omezeny na převážně vlhké a chladnější oblasti s častějším výskytem vhodných lokalit. Proto v dnešní době dochází k rozšíření zájmu také na další typy uloženin, jako jsou organicko-minerální sedimenty
pramenišť, sedimenty drobných terénních depresí, vápnité sedimenty, koluvíální uloženiny a povodňové hliny. Tak se podstatně rozšiřuje množství lokalit potenciálně vhodných k pylovým analýzám a ke slovu mohou přijít i suchá a teplá sprášová území s nejdelší historií zemědělského osídlení. (Pokorný 2001)

Nejpoužívanější a nejpropracovanější metodou studia vývoje vegetace je bezesporu pylová analýza. Ideálním předpokladem pylové analýzy je morfologická klasifikace pylových zrn za účelem jejich přiřazení jednotlivým druhům rostlin. Možnosti takové klasifikace jsou ovšem v mnoha případech omezené, a tak často nezbývá než se spokojit s determinací na úrovni pouze určité skupiny rostlinných druhů. Pokud jsou ekologické nároky jednotlivých druhů náležejících do takovéto skupiny rozdílné, snižuje se významně vypovídající schopnost nálezu. Nutno konstatovat, že pylová analýza se tohoto svého omezení těžko kdy zbavi. Možnosti determinace pylových zrn však přesto v současné době dosahují významného prohloubení. (Pokorný 2001)

Vypovídající schopnost pylové analýzy závisí i na časovém rozlišení. Chronologickou citlivost můžeme definovat jako vzájemný časový odstup dvou následujících analyzovaných vzorků, odvozený nejčastěji pomocí interpolace mezi dvěma sousedními radiokarbonovými daty. Podle druhu otázky, na kterou hledáme odpověď, je třeba zvolit odpovídající chronologickou citlivost analýzy, jejíž odhad ovšem vyžaduje dostatečně kvalitní absolutní datování příslušného profilu. (Pokorný 2001)

Cíle práce:

- Zpracovat literární rešerši zabývající se problematikou současných a historických analogů.
- Na vybraných lokalitách provést odběry mechových pastí za účelem jejich vyhodnocení.
- Zmapovat vegetaci na lokalitách ve vybraných měřítcích.
- Provést analýzu současných kartografických zdrojů.
- Pokusit se o srovnání pylového záznamu a vegetace na jednotlivých lokalitách.
2. Současné a historické analogy

Po dlouhou dobou bylo v paleobotanice běžné pokoušet se o rekonstrukci vegetace pouhou interpretací uchovaných rostlinných fosilii (Malmer et Regnéll 1986), na základě znalostí ekologických vztahů rostlin a prostředí. V posledních dvaceti letech pokročila interpretace fosilních dat od pouhé intuice k větší exaktnosti. Tento posun není dán pouze zlepšující se taxonomickou a chronologickou přesností pylové analýzy, ale také zavedením pomocných metod pro interpretaci: využití moderních a historických analogů. Oba přístupy mají své výhody i nevýhody, ale oba mohou být neocenitelnými nástroji pro přesnější interpretaci fosilních pylových záznamů.

2.1 Současné analogy

Pylové pasti umožňují odhady ročních „pylových přítoků“ (pollen influx) a zkoumání sezónních a ročních výkyvů v pylové produkci (Hicks 1985). Pylové pasti se však potýkají s řadou problémů, pasti je třeba často vyprazdňovat, hrozí nebezpečí sabotáže během dlouhé doby expozice nebo náhodné odchycení hmyzu nesoucího zoocëzní pyl, také je udávána velká variabilita účinnosti pastí v závislosti na rychlosti větru a výšce pasti nad povrchem (Odgaard 1994).

Na obrazu vegetace v pylovém záznamu se podílí celá řada faktorů. Mezi nejdůležitější patří pylová produkce jednotlivých druhů, pylový rozptyl (závislý na rychlosti spadu pylového zrna a rychlosti větru), prostorová distribuce vegetace okolo místa sběru a velikost sběrné pánve (vodní nádrže, otevřené plochy v lese). Velikost sběrné pánve a příslušná zdrojová oblast pylů mají zřejmě zásadní význam pro utváření pylového záznamu (Hicks et al., 1998).

Plyly stromů se významně podílejí na pylovém záznamu a to i mimo zalesněné plochy. Pilotní studie na téma pylové produkce a reprezentací stromů provedl Andersen (1970) a zavedl korekční faktory pro plyly stromů v pylovém záznamu.

Pylovou produkcí můžeme měřit tzv. „pylovým přítokem“, podle množství pylu zachyceného v pylových pastech v jednotkách zrnka pylu/cm² za rok. Zajímavé srovnání nabízí dlouhodobé měření ze severního Finska (sledováno 18 let) (Hicks 2001) a hor v jihozápadním Bulharsku (sledováno 6 let) (Tonkov et. al. 2001). Průměrná hodnota pylového přítoku u smrku (Picea) byla v Bulharsku 1000 zrn/cm² za rok a v severním Finsku v lese se srovnatelným zastoupením smrku 300 zrn/cm² za rok, v Bulharsku naměřili v lese s 20% zastoupením borovic (Pinus) průměrný pylový přítok 7300 zrn/cm² za rok, obdobné množství pylu naměřili v severním Finsku v monokultuře borovic. Zdá se, že klimatické podmínky zřejmě výrazně ovlivňují pylovou produkcí (Tonkov et al., 2001).

V horských oblastech, kde je transport pylů ovlivněn stoupavými větry z údolí, může být podíl pylů z údolí ve vzorcích nad hranicí lesa významný, například pyl Fagus, Quercus a Carpinus se vyskytovaly i v mechových pastech v pásu jehličnanů, ačkoliv prostředky v nižších nadmořských výškách (Tonkov et al. 2001).

Také pylová produkce se v jednotlivých letech mění (Andersen 1984, Hicks 1985, Tonkov et al. 2001). V Bulharských horách zjistili Tonkov a kol. (2001) překvapivě velká rozdíl v množství pylu mezi jednotlivými roky sledování: Pinus 34-63%, Abies 0,5-9,3%, Picea 7,4-18,4%.

Způsob opylení, typ květu a velikost pylového zrna mají úzkou souvislost s rozptylem pylu. Anemofilní nebo entomofilní druhy s početními volně vystavenými tyčinkami se vyskytují ve srovnatelném počtu v pylové vzorku a vegetaci. Dolet jejich pylových zrn nemusí být jen čistě lokální, mohou se objevit i ve vzorech několik desítek metrů vzdálených. Velikost pylového zrna mají obvykle menší než 40 μm. Specializované entomofilní druhy nebo druhy s otevřenými květy a malým počtem vystavených tyčinek bývají v pylovém vzorku podhodnoceny. V této skupině se vyskytují druhy s různě velkými pylovými zrny, podle velikosti pylové zrna proto není možné usuzovat na lepší či horší rozptylové vlastnosti. Přítomnost druhů z podhodnocené skupiny ukazuje na jejich lokální výskyt ve vegetaci. Tyto druhy tak mohou větší váhu pro rozpoznání dřívějšího způsobu obhospodařování. (Hjelle 1997)

2.2 Historické analogy

Rostoucí lidský vliv po celém světě změnil vegetaci a také způsob, kterým je vegetace zachycována v pylovém záznamu, včetně změn v druhotvé kompozici, pylové produkci, rozptylu a sedimentaci, proto je těžké najít v dnešním světě odpovídající vegetační analogy použitelné k interpretaci fosilních pylových záznamů. V některých případech tak mohou historické analogy posloužit lépe než současné (Nielsen et Odgaard 2004).
Historické zdroje mohou poskytnout vegetační data pro období před tímto vzrůstajícím lidským tlakem, které je pak možné porovnat s pylovými vzorky ze stejného období a získat soubor dat historických analogů. Historické zdroje přirozeně nemohou poskytnout informace o přítomnosti či frekvenci rostlinných druhů, v nejlepším případě pouze nepřímé. Důsledkem toho hlavní pozornost studií používajících tuto metodu bude zaměřena na vztah mezi krajinným pokryvem a příslušným pylovým vzorkem (Odgaard et Rasmussen 2000).

V této části stručně pojednáme o některých změnách vegetace a krajiny, během posledních stovek let a také o účincích těchto změn na zastoupení vegetace v pylovém záznamu.

Změny v druhové kompoziční uvnitř skupin produkujících stejný typ pylu, mohou vést k odlišné pylové produktivitě pro skupinu jako celek, tento případ nastal v Austrálii, kde mnoho introdusovaných druhů z čeledi Poaceae má mnohem větší pylovou produktivitu, než původní druhy (Smart et al. 1979). Změny, které nastaly ve složení osiva ovlivnily způsob, jakým je přítomnost zemědělské půdy zaznamenána v pylových diagramech (Nielsen et Odgaard 2004). Například větrem opyleno žito (Secale) produkuje, nebo alespoň uvolňuje 100x více pylu než ostatní obilniny, u kterých pylová zrna zůstávají trvale uzavřena.
v pluchách jakožto důsledek adaptace k samoopylení (Behre 1992). Jiné plodiny se zřídka vůbec objeví v pylovém záznamu, jako například cukrová řepa (je sklízena, dříve než kvete) nebo brambory [jejich pyl, často zůstává nerozpoznán (Joosten et De Klerk 2002)]. Množství pylu uvolněného z autogamních obilníků může vztah při použití kombajnů, jako opak tradičních technik sklízení (Vuorela 1973). Z toho vyplývá, že vztah mezi rozlohou obdélnané půdy a pylovým záznamem se v dnešní době značně odlišuje od minulosti (Nielsen et Odgaard 2004).

V mnoha zemích došlo v důsledku rozsáhlého odvodňování ke zmenšení ploch mokřin a k jejich přeměně na ornou půdu (Olsson 1991; Petit et Lambin 2002). Ve zbývajících zamokřených lokalitách se změnil vodní režim a tím také proces usazování a ukládání pylů (Davis et al. 1984).

Je nezbytné poznat, že historická data skýtají několik úzká při získávání informací o vegetaci. Většina problémů pochází z toho, že historická data byla původně určena úplně jiným účelům. Přesnost informací záleží na původně zamýšleném použití. Mohly se například vysoříct praktické nebo ekonomické pohnutky k vložení špatné informace do záznamu, třeba z daňových důvodů (Nielsen et Odgaard 2004), nebo úředníci z pohodlnosti zavazovávali po několik let stejné rozlohy obdélnané půdy, místo shromažďování nových dat pro každý rok (Joosten 1986).

Ve starých mapách mohou být geometrické nepřesnosti, v porovnání s moderními, způsobené částečně technickými problémy při vytváření map a částečně také skutečností, že některé informace, jako pozice řek, nebyly pro zeměměřiče tak důležité, jako jiné, například hranice polí (Cousins 2001). Chyby se mezi mapami liší, záleží na kvalitě a době původu mapy (Nielsen et Odgaard 2004). Jak velkou chybu je možné akceptovat zaleží na cíli výzkumu.
3. Metodika

3.1 Studované lokality

Základním klíčem při výběru lokalit byla přítomnost rašeliníku *Sphagnum* a vhodných sedimentů, které by mohly poskytnout fosilní pylové vzorky.

Byly vybrány tři typově odlišné lokality. Pro jednotlivé lokality jsem použila název, který místně nejlépe přibližuje místo sběru mechového vzorku. Celá zájmová oblast postihuje prostor větší, ve kterém je vždy místo sběru středem.

3.1.1 Černíš u Českých Budějovic

Mapa potenciální přirozené vegetace udává v oblasti hlavně střemchovou doubravu a olšinu s ostřicí třeslicovitou místy v komplexu s mokřadními olšinami a společenstvy rákosin a vysokých ostřic, na části území je rekonstruována biková a/nebo jedlová doubrava (Neuhäuslová 1998).

Území patří do mírně teplé klimatické oblasti - jednotka MT11 (Quitt 1971). Nadmořská výška se pohybuje okolo 380 m n. m.

Geomorfologicky území patří do celku Českobudějovické pánve, okrsku Zlivská pánev s plochým reliéfem (Lázněčka 1965). Výplň pánve tvoří sladkovodní svrchnořídové a tercierní uloženiny (Chlupáč et al. 2002). Tyto starší uloženiny jsou překryty pleistocénními terasami, na Vltavě jsou vyvinuty 3 (Balatka et Sládek 1962).

3.1.2 Velanská cesta u Českých Velenic

Lokalita se nacházel v těsné blízkosti rozhraní Třeboňské pánve a podhůří Novohradských hor, nedaleko obce Vyšné. První paleobotanický výzkum na lokalitě provedla v roce 1963 V. Jankovská. Tento výzkum odhalil pod rašelinným sedimentem přítomnost jezerního sedimentu a ukázal, že sedimenty jsou postglaciálního stáří (Jankovská 1980). V současné době na lokalitě probíhá paleoenvironmentální výzkum pod vedením Kateřiny Novákové, je zpracovávána pylová, cladocerová, diatomová, antrakologická, pediastrová

Mapa potenciální přirozené vegetace rekonstruuje v oblasti acidofilní bikové a/nebo jedlové dousbravy (Neuhäuslová 1998).

Území patří do mírně teplé klimatické oblasti – jednotka MT4 (Quitt 1971). Nadmořská výška se pohybuje okolo 500 m n. m.

Geomorfologicky náleží do celku Třeboňské pánve, okrsku Českobudějovická pánve s plochým mírně zvlněným reliéfem (Láznická 1965). Výplň pánve tvoří, stejně jako v pánvi Českobudějovická, sladkovodní svrchnokřídové a tercierní sedimenty (Chlupáč et al. 2002). V jižní části a na severozápadním okraji třeboňské pánve vznikla pro malý spád, nedostatečné odvodnění a nepropustné podloží rozsáhlá rašeliniště (Láznická 1965).

3.1.3 Vladař u Žlutic

Mapa potenciální přirozené vegetace rekonstruuje v oblasti bikové a/nebo jedlové doubravy a na čedičových příkrovecích černýšové dubohabřiny (Neuhäuslová 1998).

Území patří do mírně teplé klimatické oblasti – jednotka MT4 (Quitt 1971), území leží ve srážkovém stínu Krušných a Doupovských hor.

Geomorfologicky území patří do celku Tepelské vrchoviny, okrsku Vladařská vrchovina. Od Doupovských hor je oddělena zářezem údolí Střely. Početné jsou zde hřiby a vrchy na reliktách povrhových sopečných těles (Vladař, Zámecký vrch), spočívajících na starotřetihorní zarovnaném povrchu (Chlupáč et al. 2002). Stolová hora Vladař je ve své rozsáhlé vrcholové části mírně zvlněná, na příkrých svazích se vyvinuly mrazové sruby a srázy, skalky, hranáčové osupy, balvanové proudy a kamenná moře.
3.2 Vegetační mapování

3.3 Mechové pasti

3.4 Mapové podklady

Mapové podklady byly připraveny v programu ArcGis. Byly použity recentní ortofotomapy. Pro kvantifikaci krajinných typů byly zvoleny následující kategorie, které bylo možné z mapy rozlišit - les, rozvolněný les, louka, pole, vodní plocha, pobřežní vegetace, zástavba. Na mapách byla vyznačena místa sběru mechového polštáře, zaměřená přístrojem GPS. Pak byly zdigitalizovány vrstvy jednotlivých okruhů (100 m, 500 m, 2 km). Výstupem GIS analýzy jsou plochy kategorií v jednotlivých okruzech a barevná mapa s rozlišením kategorií dvoukilometrového okruhu. Výstupy GIS analýzy nebyly použity k dalšímu zpracování. Posloužili pouze pro lepší představu o vegetačním pokryvu. (viz. příloha)
3.5 Vyhodnocení

Pro porovnání pylů z mechové pasti a vegetačních snímků každé lokality byla použita grafická srovnání pylů stromového patra – AP (arboreal pollen) a bylinného patra NAP (nonarboreal pollen) s vegetačními snímkami.

Pro porovnání lokalit byla použita DCA ordinační analýza všech vegetačních snímků a pylových vzorků. U pylových vzorků byla jako vstupní data použita procenta z TPS (total pollen sum). U vegetačních snímků bylo sjednoceno zastoupení druhů stromového a keřového patra a byla rovněž použita procentická zastoupení.
4. Výsledky

4.1 Černiš

4.1.1 Vegetace

V okolí 500 m se ve stromovém patře objevila i kulturní výsadba *Picea abies*. V keřovém patře přibyly vrby – *Salix cinerea*, *Salix caprea*, *Salix fragilis*. V bylním patře se dominanty nezměnily, zvětšil se podíl *Urtica dioica*, přibyly *Bolboschoenus sp.* (*Cyperaceae*) a *Juncus effusus* (*Juncaceae*). U bažantnice se byla pěstována kukuřice *Zea mays*.

Do okolí dvou kilometrů byla zahrnuta již celá rezervace Vrbenské rybníky, která mimo mokřadní olšiny zahrnuje i mezofilní ovsíkové louky svazu *Arhenatherion*, bezkolencové louky střídavě vlhkých stanovišť svazu *Molinion*, společenstva terestrických i litorálních vysokých ostřic *Caricion gracilis* a rákosin *Phragmition communis*. Na rybnících se nacházejí společenstva volné vodní hladiny *Lemnion minoris*, *Nymphaeion albae*, na hrázích rostou stromofádí starých dubů (*Quercus robur*). Dále sem patřila severozápadní část sídliště města České Budějovice, část lesa – kulturní výsadby *Picea abies*, *Pinus sylvestris* a *Quercus robur* na západním okraji sídliště Máj, Starý houženský, Dasenský, Starohalkovský a část Novohalkovského rybníka a přilehlá pole převážně s *Zea mays* a *Helianthus annuus*.

4.1.2 Vyhodnocení pylového vzorku

zastoupeny, nemají bohužel velkou vypovídací hodnotu o pokryvnosti mechů, nemůžeme totiž vyloučit, že pocházely ze samotné mechové pasti.

![Diagram](image)

Obr. 1 Graf počtu pylových zrn/spor jednotlivých pylových taxonů nalezených ve vzorku z mechové pasti na lokalitě Černíš.

4.1.3 Srovnání pylového vzorku a vegetace

Z pylů stromů byl nejvíce zastoupen pyl Alnus, v pylovém vzorku byl však nadhodnocen oproti vegetačním snímkům. Rovněž pyl Pinus byl nadhodnocen vegetačním snímkům. Pyl Picea zhruba odpovídal zastoupení v okruhu 500 m, ale byl podhodnocen zastoupení v okruhu 2 km. Pyl Betula byl podhodnocen v zastoupení v okruhu 100 m i v okruhu 500 m.
Obr. 2 Graf procentuálního zastoupení AP (arboreal pollen) a stromů v pylovém záznamu a ve vegetačních snímcích na lokalitě Černič.

Obr. 3 Graf procentuálního zastoupení pylového taxonu Poaceae v pylovém záznamu a ve vegetaci na lokalitě Černič.
4.2 Velanská cesta

4.2.1 Vegetace

Místo sběru mechové pasti se nacházelo v kulturní výsadbě *Pinus sylvestris*, pod kterou lze nalézt prvky svazu *Dichroa Pinion*. Keřové patro tvořila téměř výhradně *Frangula alnus*. Bylinnému patru dominovalo *Vaccinium myrtillus*, ale početné byly i *Vaccinium uliginosum, Calluna vulgaris, Molinia caerulea (Poaceae)*. Stejný typ vegetace se nacházel i v okruhu 100 m.

Charakter vegetace byl podobný i v okruhu 500 m, přibyla kulturní výsadba *Picea abies* a plošně menší porosty *Betula pendula, Alnus incana* a *Alnus glutinosa*. Keřovému patru stále dominovala *Frangula alnus*. Hlavní podl v bylinném patře se rozdělil mezi *Vaccinium myrtillus, Carex brizoides, Molinia caerulea* a *Calamagrostis canescens*, výrazněji zastoupené byly ještě *Oxalis acetosella, Urtica dioica, Avenella flexuosa* a *Pteridium aquilinum*.

V okruhu dvou kilometrů se charakter vegetace opět příliš nezměnil, převládala kulturní výsadba *Picea abies* a přibyla *Betula pendula*. Na rakouské straně okolo obce Höhenberg se nacházela obilná pole.

4.2.2 Vyhodnocení pylového vzorku

Ve vzorku bylo nalezeno 19 pylových kategorií. Až na pyl *Ranunculaceae* (nezahrnuje rod *Ranunculus*) se rostliny produkující tyto typy pylů vyskytovaly ve vegetačních snímcích.

4.2.3 Srovnání pylového vzorku a vegetace

Bezesporu nejvíce byl zastoupen pyl *Pinus*, počet jeho pylových zrn řádově převyšoval zastoupení ostatních pylů. Dále byly výraznější zastoupeny pyly *Betula, Picea* a *Alnus*. Druhy bylinného patra nebyly výrazněji zastoupeny.

Pyl *Pinus* byl nadhodnocen v pylovém vzorku, oproti svěmu zastoupení ve vegetaci. Pyl *Betula* byl zastoupen ve srovnatelném množství v pylovém vzorku a okruhu 2 km. Pyl *Picea* byl zastoupen ve srovnatelném množství v pylovém vzorku a okruhu 500 m, ale vůči okruhu 2 km byl podchodnocen. Pyl *Alnus* odpovídal zastoupení olši v okruhu 500 m i 2 km.
Obr. 4 Graf počtu pylových zrn/spor jednotlivých pylových taxonů nalezených ve vzorku z mechové pasti na lokalitě Velanská cesta.

Obr. 5 Graf procentuálního zastoupení AP (Arboreal pollen) a stromů v pylovém záznamu a ve vegetačních snímcích na lokalitě Velanská cesta.
4.3 Vladař

4.3.1 Vegetace

V okruhu do 100 m se nacházely louky a opušťené pastviny, dnes již místy značně zarostlé keřovými formacemi Crataegus sp. a Prunus spinosa. Rostlo zde také několik velkých jedinců Quercus petraea. Nedaleko od jezírka rostla skupina Betula pendula. V bylinném patře dominovala Calamagrostis epigeios, a další traviny Brachypodium pinnatum, Arhenatherum elatius, Alopecurus pratensis, Dactylis glomerata, na vzhledu bylinného patra se výrazně podílely druhy rodu Vicia - Vicia cracca, Vicia hirta, Vicia sativa, Vicia tetrasperma, zastoupeny byli i Achillea millefolium, Fragaria vesca i viridis, Galtium album agg. a Galtum verum.

V okruhu 500 m byly na jižním svahu kopce dubohabřiny svazu Melampyro nemorosi-Carpinetum s vtroušenou lípou, na východním svahu přirozené suťové lesy Tilio-Acerion. Na okrajích lesů se vyskytovala společenstva lesních lemů a plášťů svazů Trifolion medii i Geranion sanguinei. Část svahů pokryvaly kulturní porosty Larix decidua, Pinus sylvestris a Picea abies. Na sutích, čedičových skalách a skalních štěrbinách se vyskytovala vegetace svazu Alyssio-Festucion pallentis.

V okruhu 2 km byl okolo toku Střely vrbový lem se Salix alba, Salix fragilis a na okolních podmáčených půdách rostla spíše Alnus glutinosa. Okruh doplňovala především obilná pole.

4.3.2 Vyhodnocení pylového vzorku

Ve vzorku bylo nalezeno 29 pylových kategorií, tedy nejvíce kategorií ze všech snímků. I když některé druhy se vyskytovaly ve vegetačních snímcích, ale některé měli své zástupce až v okruhu 2 km jako pyly Brassicaceae a Cerealia.

U dobře zastoupených spor mechů opět nemůžeme vyloučit, že pocházely přímo z mechové pasti.
Obr. 6 Graf počtu pylových zrn/spor jednotlivých pylových taxonů nalezených ve vzorku z mechové pasti na lokalitě Vladař.

4.3.3 Srovnání pylového vzorku a vegetace

Pyly stromů byly výrazně nadhodnoceny svému výskytu ve vegetaci. *Pinus* a *Picea* rostly ve formě početné kulturní výsadby v okruhu 500 m a 2 km. *Betula* rostla v okruhu 100 m v menší skupině nedaleko jezírka. *Alnus* však rostla až v okruhu 2 km u řeky pod kopcem.

Z bylinného patra byly nejvýrazněji zastoupeny *Cyperaceae, Typha latifolia, Poaceae* a *Ranunculaceae*. *Cyperaceae* rostly přímo v rašelinném jezírku, stejně jako *Typha*. *Poaceae* dominovaly celé plošině kopce. *Ranunculaceae* se ve snímcích také vyskytovaly, ovšem jen sporadicky a jejich pokryvnost nebyla vysoká (méně než 1 %).

Množství ve vegetaci dobře zastoupených druhů se sice v pylovém vzorku vyskytovalo, ale jen v počtu jednoho nebo několika zrn.
Obr. 7 Graf procentuálního zastoupení AP (Arboreal pollen) a stromů v pylovém záznamu a ve vegetačních snímcích na lokalitě Vladař.

Obr. 8 Graf procentuálního zastoupení NAP (Nonarboreal pollen) a bylin v pylovém záznamu a ve vegetačních snímcích na lokalitě Vladař.
4.4 Porovnání lokalit

Obr. 9 DCA ordinace snímků. Vysvětlivky: cer – Černíš, vel – Velanská cesta, vlad – Vladař, pyl – pylový vzorek, 1 – snímek 10x10 m, 2 – snímek 100 m, 3 – snímek – 500 m, 4 – snímek 2 km.

Na ordinačním diagramu je vidět rozložení jednotlivých vegetačních snímků a pylových vzorků v prostoru prvních dvou ordinačních os. Za nejvíce podobné můžeme označit snímky z Černíše, pylový vzorek se podobá všem vegetačním snímkům kromě dvoukilometrového. Také snímky z Velanské cesty vykazují poměrně dobrou shodu. Naopak nejméně podobné jsou si snímky z Vladaře. Největší snímky dvoukilometrových okruhů se značně odlišují od ostatních snímků, zahrnují v sobě více vegetačních typů, takže jsou si spíše podobné mezi sebou, než ostatním snímkům ze svých lokalit.
5. Diskuse

Podle očekávání se na počtu pylových zrn ve vzorcích podíleli převážně pyly stromů, jen u pylového vzorku z Černíše převládl nad ostatními pty Poaceae, ale i tady byly výrazně zastoupeny pyly ze stromového patra.

Pyl Pinus bývá často uváděn jako nadhodnocený, dokonce všudypřítomný v pylových záznamech (Prentice et al. 1987), ale jeho podíl se často zmenšuje v lesích, ve kterých není dominantním druhem. Pokud se místo sběru nachází pod uzavřenou lesní klenbou, pak je minimalizována zdrojová oblast pylů (Jackson et Kearsley 1998). Naopak v otevřené krajině je mnohem větší výskyt regionálního pylu (Hjelle 1998). Podobný případ je dobře patrný i u zkoumaných lokalit. Ačkoli byl pyl Pinus přítomen v pylových vzorcích ze všech lokalit, jsou patrné rozdíly v početnosti. Na lokalitě Velanská cesta, kde v okruhu 500 m převládala výsadba borovice, měl pyl borovice zastoupení 77 % z TPS (total pollen sum), to v podstatě odpovídá jeho dominantnímu zastoupení ve vegetaci. Na lokalitě Černíš, kde se v okruhu 500 m rozprostírala hlavně mokřadní olšina, měl zastoupení jen 8,5 % z TPS. Naopak na lokalitě Vladař, kde se v okruhu 100 m nenacházel ani jediná borovice a vegetační kryt byl tvořen hlavně rozvolněnými keřovými formacemi, byl podíl Pinus 24 % z TPS. Ve vegetačním zápoji se tedy pyl Pinus chová v podstatě podobně jako ostatní pyly stromů.

Podobný trend je patrný i u pylu Picea, který byl nejvíce zastoupen na Vladaři 15,2 % z TPS, kde stejně jako borovice rostl nejblíže až v okruhu 500 m s pokryvností asi 20 % z celého okruhu. I ze tedy potvrdit, že lesní porost výrazně ovlivňuje charakter pylového spadu a naopak otevřená plocha sbírá i regionální pyl.

Produkce pylových zrn Betula i jejich disperze je poměrně velká (Pokorný 2001), to je patrné zejména na lokalitě Vladař, kde zjevně stačilo jen několik stromů rostoucích v blízkosti odběru, k poměrně výraznému zastoupení (13,4 % z TPS) v pylovém vzorku.
Pyl *Alnus* dominoval pylům stromů v mokřadní olšině Černíš. Můžeme tedy říci, že pokud se místo sběru mechové pasti nachází v lesním porostu je i v pylovém vzorku významný podíl dominanty stromového patra.

Jeden typ pylu byl přítomen v pylovém vzorku, avšak nebyl zaznamenán ve vegetaci. Jedná se o pyl *Ranunculaceae* na lokalitě Velanská cesta, mohlo jít o některý druh kvetoucí brzy na jaře (např. *Ficaria verna*), který pak již nebyl dostatečně viditelný. Stejná situace pravděpodobně nastala i u pylu *Brassicaeae* na lokalitě Vladař, který sice byl přítomen ve vegetaci, ale až v 2 km okruhu. Lze předpokládat, že také pochází z některého druhu kvetoucího brzy na jaře (např. *Cardamine pratensis*).

Sugita et al. (1999) uvádí, že většina pylového sadu v průměrně evropské kulturní krajině pochází z okruhu 800 až 1000 metrů. V lesním porostu se zdrojová oblast přirozeně zmenšuje (Jackson et Kearsley 1998). I zde můžeme říci, že pylové vzorky zachycovaly spíše pylky z bližšího okolí, okruhu 100 a 500 m, než ze širšího okruhu 2 km.

Lokalita Vladař byla jednoznačně nejvíce diferencovaná, lze na ni rozlišit tři zcela odlišné biotopy, nejdříve zazemněná cisterna, pak louky zarůstající křovinami a pak lesní porosty rozprostírající se hlavně na svazích kopce. Naopak lokalita Černíš byla ještě v okruhu 500 m vícečně kompaktním biotopem mokřadní olšiny, také proto by tato lokalita mohla být vhodným moderním analogem pro v Budějovické pánev dříve rozsáhlé mokřadní olšiny. Lokalita Velanská cesta zůstala i v okruhu 2 km především lesním porostem, resp. kulturní výsadbou, jen s tím rozdílem, že v okruhu 500 m dominovala *Pinus sylvestris*, ale v okruhu 2 km už *Picea abies*. Jak je patrné i na ordinačním diagramu DCA analýzy, kde jsou snímky z Vladaře různě rozloženy v ordinačním prostoru, nejvíce se odlišuje právě snímek ze zazemněně cistenty, snímky z Černíše jsou si blízké, až na 2 km okruh, a snímky z Velanské cesty jsou si poměrně podobné.

Na závěr lze říci, že tato práce alespoň nastínila možnosti šíření pylů v naší krajině.
6. Literatura

reconstructions of land-use history in south Sweden, 3000-0 BP. Review of Palaeobotany and Palynology 82: 47-73.

7. Přílohy

1. Tabulka zaznamenaných druhů a pylových typů (X – znamená, že není možné pyl určit)

<table>
<thead>
<tr>
<th>druh</th>
<th>pylový typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer platanoides</td>
<td>Acer</td>
</tr>
<tr>
<td>Acer pseudoplatanus</td>
<td>Acer</td>
</tr>
<tr>
<td>Aesculus hippocastanum</td>
<td>Aesculus hippocastanum</td>
</tr>
<tr>
<td>Agrimonia eupatoria</td>
<td>Agrimonia eupatoria</td>
</tr>
<tr>
<td>Agrostis canina</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Agrostis stolonifera</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Achillea milfofium</td>
<td>Achillea</td>
</tr>
<tr>
<td>Ajuga repens</td>
<td>Ajuga</td>
</tr>
<tr>
<td>Alchemilla vulgaris</td>
<td>Alchemilla</td>
</tr>
<tr>
<td>Allium oleraceum</td>
<td>X</td>
</tr>
<tr>
<td>Alnus glutinosa</td>
<td>Alnus</td>
</tr>
<tr>
<td>Alnus incana</td>
<td>Alnus</td>
</tr>
<tr>
<td>Alopecurus pratensis</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Angelica sylvestris</td>
<td>Angelica sylvestris</td>
</tr>
<tr>
<td>Anthriscus sylvestris</td>
<td>Apiaceae</td>
</tr>
<tr>
<td>Arhenatherum elatius</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Artemisia vulgaris</td>
<td>Artemisia</td>
</tr>
<tr>
<td>Astragalus glycyphyllos</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Athyrium filix-femina</td>
<td>monoletní spory</td>
</tr>
<tr>
<td>Avenella flexuosa</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Avenula pubescens</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Betula pendula</td>
<td>Betula</td>
</tr>
<tr>
<td>Betula pubescens</td>
<td>Betula</td>
</tr>
<tr>
<td>Bolboschæenus sp.</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Brachypondium pinnatum</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Briza media</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Bromus inermis</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Calamagrostis canescens</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Calamagrostis epigeios</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Calluna vulgaris</td>
<td>Calluna</td>
</tr>
<tr>
<td>Campanula patula</td>
<td>Campanula</td>
</tr>
<tr>
<td>Campanula persicifolia</td>
<td>Campanula</td>
</tr>
<tr>
<td>Campanula rapunculoides</td>
<td>Campanula</td>
</tr>
<tr>
<td>Campanula rotundifolia</td>
<td>Campanula</td>
</tr>
<tr>
<td>Cardus crispus</td>
<td>Cardus</td>
</tr>
<tr>
<td>Carex acuta</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Carex brizoides</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Carex elata</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Carex muricata agg.</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Carex pseudocyperus</td>
<td>Cyperaceae</td>
</tr>
<tr>
<td>Carlina vulgaris</td>
<td>Carlina</td>
</tr>
<tr>
<td>Centaurea scabiosa</td>
<td>Centaurea scabiosa</td>
</tr>
<tr>
<td>Cirsium eriophorum</td>
<td>Cirsium</td>
</tr>
<tr>
<td>Cirsium heterophyllum</td>
<td>Cirsium</td>
</tr>
<tr>
<td>Cirsium palustre</td>
<td>Cirsium</td>
</tr>
<tr>
<td>Cirsium rivulare</td>
<td>Cirsium</td>
</tr>
<tr>
<td>Clinopodium vulgare</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td>Coronilia varia</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Corylus avellana</td>
<td>Corylus avellana</td>
</tr>
<tr>
<td>Cotoneaster integerima</td>
<td>Rosaceae</td>
</tr>
<tr>
<td>Crataegus laevigata</td>
<td>Crataegus</td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Deschampsia caespitosa</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Dianthus deltoides</td>
<td>Sileneae</td>
</tr>
<tr>
<td>Digitalis grandiflora</td>
<td>Scrophulariaceae</td>
</tr>
<tr>
<td>Dryopteris carthusiana</td>
<td>monoletni spory</td>
</tr>
<tr>
<td>Dryopteris dilatata</td>
<td>monoletni spory</td>
</tr>
<tr>
<td>Dryopteris filix-mas</td>
<td>monoletni spory</td>
</tr>
<tr>
<td>Eleocharis sp.</td>
<td>Juncaceae</td>
</tr>
<tr>
<td>Epilobium angustifolium</td>
<td>Epilobium</td>
</tr>
<tr>
<td>Equisetum fluviatile</td>
<td>Equisetum</td>
</tr>
<tr>
<td>Eriophorum angustifolium</td>
<td>Eriophorum</td>
</tr>
<tr>
<td>Eupatorium cannabinum</td>
<td>Rosaceae</td>
</tr>
<tr>
<td>Euphorbia cyparissias</td>
<td>Euphorbia</td>
</tr>
<tr>
<td>Euphrasia sp.</td>
<td>Scrophulariaceae</td>
</tr>
<tr>
<td>Fagus sylvatica</td>
<td>Fagus</td>
</tr>
<tr>
<td>Festuca altissima</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Festuca rubra</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Festuca ripicola</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Filipendula officinalis</td>
<td>Filipendula</td>
</tr>
<tr>
<td>Fragaria vesca</td>
<td>Fragaria</td>
</tr>
<tr>
<td>Fragaria viridis</td>
<td>Fragaria</td>
</tr>
<tr>
<td>Frangula alnus</td>
<td>Frangula</td>
</tr>
<tr>
<td>Galeopsis tetrahit</td>
<td>Galeopsis</td>
</tr>
<tr>
<td>Galium album agg.</td>
<td>Galium typ</td>
</tr>
<tr>
<td>Galium aparine</td>
<td>Galium typ</td>
</tr>
<tr>
<td>Galium palustre</td>
<td>Galium typ</td>
</tr>
<tr>
<td>Galium pumilum</td>
<td>Galium typ</td>
</tr>
<tr>
<td>Galium uliginosum</td>
<td>Galium typ</td>
</tr>
<tr>
<td>Galium verum</td>
<td>Galium typ</td>
</tr>
<tr>
<td>Geranium robertianum</td>
<td>Geranium</td>
</tr>
<tr>
<td>Geum urbanum</td>
<td>Geum</td>
</tr>
<tr>
<td>Glyceria fluviatilis</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Gnaphalium sylvaticum</td>
<td>Aster/tubulliforae</td>
</tr>
<tr>
<td>Hedera helix</td>
<td>Hedera</td>
</tr>
<tr>
<td>Helianthemum nummularium</td>
<td>Helianthemum</td>
</tr>
<tr>
<td>Heracleum sphondylium</td>
<td>Apiaceae</td>
</tr>
<tr>
<td>Hieracium cymosum</td>
<td>Aster/liguliflorae</td>
</tr>
<tr>
<td>Holcus mollis</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Holosteum gramineum</td>
<td>Stellaria typ</td>
</tr>
<tr>
<td>Hypericum perforatum</td>
<td>Hypericum</td>
</tr>
<tr>
<td>Hypericum barbatum</td>
<td>Hypericum</td>
</tr>
<tr>
<td>Hypochoeris radicata</td>
<td>Aster/liguliflorae</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>Chenopodiaceae</td>
</tr>
<tr>
<td>Impatiens noli-tangere</td>
<td>Impatiens noli-tangere</td>
</tr>
<tr>
<td>Impatiens parviflora</td>
<td>Impatiens parviflora</td>
</tr>
<tr>
<td>Jasiona montana</td>
<td>Campanulaceae</td>
</tr>
<tr>
<td>Juncus effusus</td>
<td>Juncaceae</td>
</tr>
<tr>
<td>Knautia arvensis</td>
<td>Knautia arvensis</td>
</tr>
<tr>
<td>Koeleria pyramidalata</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Larix decidua</td>
<td>Larix</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Lathyrus pratensis</td>
<td>Lathyrus</td>
</tr>
<tr>
<td>Lathyrus vernus</td>
<td>Lathyrus</td>
</tr>
<tr>
<td>Lemma minor</td>
<td>Lemma</td>
</tr>
<tr>
<td>Linaria vulgaris</td>
<td>Scrophulariaceae</td>
</tr>
<tr>
<td>Lonicera xylosteum</td>
<td>Lonicera</td>
</tr>
<tr>
<td>Lotus corniculatus</td>
<td>Lotus</td>
</tr>
<tr>
<td>Luzula campestris</td>
<td>Juncaceae</td>
</tr>
<tr>
<td>Luzula pilosa</td>
<td>Juncaceae</td>
</tr>
<tr>
<td>Luzula sylvatica</td>
<td>Juncaceae</td>
</tr>
<tr>
<td>Lycopus europeus</td>
<td>Lycopus europeus</td>
</tr>
<tr>
<td>Lychnis viscaria</td>
<td>Silenaceae</td>
</tr>
<tr>
<td>Lysimachia nummularia</td>
<td>Lysimachia</td>
</tr>
<tr>
<td>Lysimachia vulgaris</td>
<td>Lysimachia</td>
</tr>
<tr>
<td>Lythrum salicaria</td>
<td>Lythrum</td>
</tr>
<tr>
<td>Maianthemum bifolium</td>
<td>Maianthemum</td>
</tr>
<tr>
<td>Malva neglecta</td>
<td>Malvaceae</td>
</tr>
<tr>
<td>Melampyrum sylvaticum</td>
<td>Melampyrum</td>
</tr>
<tr>
<td>Molinia caerulea</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Myosoton aquaticum</td>
<td>X</td>
</tr>
<tr>
<td>Oxalis acerosella</td>
<td>Oxalis</td>
</tr>
<tr>
<td>Oxyccocus palustris</td>
<td>Oxyccocus</td>
</tr>
<tr>
<td>Peucedanum cervaria</td>
<td>Peucedanum</td>
</tr>
<tr>
<td>Phalaris arundinacea</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Phleum pratense</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Phragmites australis</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Picea abies</td>
<td>Picea</td>
</tr>
<tr>
<td>Pimpinella saxifraga</td>
<td>Pimpinella</td>
</tr>
<tr>
<td>Pinus sylvestris</td>
<td>Pinus</td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>Plantago lanceolata</td>
</tr>
<tr>
<td>Plantago major</td>
<td>Plantago major</td>
</tr>
<tr>
<td>Plantago media</td>
<td>Plantago media</td>
</tr>
<tr>
<td>Poa angustifolia</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Polygonum aviculare</td>
<td>Polygonum aviculare</td>
</tr>
<tr>
<td>Potamogeton sp.</td>
<td>Potamogeton</td>
</tr>
<tr>
<td>Potentilla anserina</td>
<td>Potentilla typ</td>
</tr>
<tr>
<td>Potentilla argentea</td>
<td>Potentilla typ</td>
</tr>
<tr>
<td>Potentilla erecta</td>
<td>Potentilla typ</td>
</tr>
<tr>
<td>Potentilla taubermanste</td>
<td>Potentilla typ</td>
</tr>
<tr>
<td>Primula veris</td>
<td>Primulaceae</td>
</tr>
<tr>
<td>Prunella vulgaris</td>
<td>Prunella</td>
</tr>
<tr>
<td>Prunus avium</td>
<td>Prunus</td>
</tr>
<tr>
<td>Prunus spinosa</td>
<td>Prunus</td>
</tr>
<tr>
<td>Pteridium aquilinum</td>
<td>monoteční spory</td>
</tr>
<tr>
<td>Pyrus communis</td>
<td>Pyrus</td>
</tr>
<tr>
<td>Quercus petraea</td>
<td>Quercus</td>
</tr>
<tr>
<td>Quercus robur</td>
<td>Quercus</td>
</tr>
<tr>
<td>Ranunculus auricomus</td>
<td>Ranunculus</td>
</tr>
<tr>
<td>Ranunculus repens</td>
<td>Ranunculus</td>
</tr>
<tr>
<td>Rhamnus cathartica</td>
<td>Rhamnus</td>
</tr>
<tr>
<td>Rhinanthus minor</td>
<td>Scrophulariaceae</td>
</tr>
<tr>
<td>Rosa canina</td>
<td>Rosa</td>
</tr>
<tr>
<td>Rubus fruticosus</td>
<td>Rubus</td>
</tr>
<tr>
<td>Rubus idaeus</td>
<td>Rubus</td>
</tr>
<tr>
<td>Rubus sp.</td>
<td>Rubus</td>
</tr>
<tr>
<td>Rumex sp.</td>
<td>Rumex</td>
</tr>
<tr>
<td>Salix caprea</td>
<td>Salix</td>
</tr>
<tr>
<td>Salix cinerea</td>
<td>Salix</td>
</tr>
<tr>
<td>Salix fragilis</td>
<td>Salix</td>
</tr>
<tr>
<td>Sambucus nigra</td>
<td>Sambucus nigra</td>
</tr>
<tr>
<td>Sanguisorba minor</td>
<td>Sanguisorba minor</td>
</tr>
<tr>
<td>Sanguisorba officinalis</td>
<td>Sanguisorba officinalis</td>
</tr>
<tr>
<td>Scabiosa columbaria</td>
<td>Scabiosa columbaria</td>
</tr>
<tr>
<td>Scrophularia nodosa</td>
<td>Scrophulariaceae</td>
</tr>
<tr>
<td>Selinum carvifolia</td>
<td>Apiales</td>
</tr>
<tr>
<td>Senecio jacobea</td>
<td>Senecio</td>
</tr>
<tr>
<td>Senecio vulgaris</td>
<td>Senecio</td>
</tr>
<tr>
<td>Solanum dulcamara</td>
<td>Solanaceae</td>
</tr>
<tr>
<td>Sorbus aucuparia</td>
<td>Sorbus</td>
</tr>
<tr>
<td>Stellaria graminea</td>
<td>Stellaria typ</td>
</tr>
<tr>
<td>Symphytum officinale</td>
<td>Boraginaceae</td>
</tr>
<tr>
<td>Tanacetum vulgare</td>
<td>Aster/tubuliflorae</td>
</tr>
<tr>
<td>Taraxacum sp.</td>
<td>Aster/liguliflorae</td>
</tr>
<tr>
<td>Thymus pullatagoides</td>
<td>Lamiaceae</td>
</tr>
<tr>
<td>Tilia cordata</td>
<td>Tilia</td>
</tr>
<tr>
<td>Tragopogon sp.</td>
<td>Aster/liguliflorae</td>
</tr>
<tr>
<td>Trifolium arvense</td>
<td>Trifolium</td>
</tr>
<tr>
<td>Trifolium alpestre</td>
<td>Trifolium</td>
</tr>
<tr>
<td>Trifolium campestre</td>
<td>Trifolium</td>
</tr>
<tr>
<td>Trifolium media</td>
<td>Trifolium</td>
</tr>
<tr>
<td>Trifolium repens</td>
<td>Trifolium</td>
</tr>
<tr>
<td>Trisetum flavescens</td>
<td>Poaceae</td>
</tr>
<tr>
<td>Typha angustifolia</td>
<td>Typha</td>
</tr>
<tr>
<td>Typha latifolia</td>
<td>Typha</td>
</tr>
<tr>
<td>Urtica dioica</td>
<td>Urtica dioica</td>
</tr>
<tr>
<td>Vaccinium myrtillus</td>
<td>Vaccinium</td>
</tr>
<tr>
<td>Vaccinium uliginosum</td>
<td>Vaccinium</td>
</tr>
<tr>
<td>Vaccinium vitis-idaea</td>
<td>Vaccinium</td>
</tr>
<tr>
<td>Verbascum hychnonis</td>
<td>Scrophulariaceae</td>
</tr>
<tr>
<td>Veronica arvensis</td>
<td>Scrophulariaceae</td>
</tr>
<tr>
<td>Veronica chamaedrys</td>
<td>Scrophulariaceae</td>
</tr>
<tr>
<td>Vicia cracca</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vicia hirta</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vicia sativa</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Vicia tetrasperma</td>
<td>Fabaceae</td>
</tr>
<tr>
<td>Zea mays</td>
<td>Zea mays</td>
</tr>
<tr>
<td>Mehlys</td>
<td>trilettní spory</td>
</tr>
</tbody>
</table>
2. Vrstva 2 km okruhu na lokalitě Černiš.
3. Vrstva 2 km okruhu na lokalitě Velanská cesta.
4. Vrstva 2 km okruhu na lokalitě Vladař.
5. Tabulka ploch jednotlivých krajinných kategorií na lokalitách.

<table>
<thead>
<tr>
<th>kategorie</th>
<th>Černíš</th>
<th>Vladsí</th>
<th>Velanská cesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>plocha (m²)</td>
<td>plocha (m²)</td>
<td>plocha (m²)</td>
<td></td>
</tr>
<tr>
<td>Okruh 100 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>les</td>
<td>23055,7709</td>
<td>13510,4617</td>
<td>31395,2598</td>
</tr>
<tr>
<td>louka</td>
<td>6292,1429</td>
<td>8599,6475</td>
<td></td>
</tr>
<tr>
<td>rozvolněný les</td>
<td>2046,8209</td>
<td>9271,9397</td>
<td></td>
</tr>
<tr>
<td>Okruh 500 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>les</td>
<td>600567,4546</td>
<td>499196,5237</td>
<td>713991,4783</td>
</tr>
<tr>
<td>louka</td>
<td>63381,0179</td>
<td>127013,5107</td>
<td>8412,6439</td>
</tr>
<tr>
<td>pole</td>
<td>41930,2258</td>
<td>31167,8833</td>
<td></td>
</tr>
<tr>
<td>rozvolněný les</td>
<td>5797,4608</td>
<td>124943,7981</td>
<td>62469,0697</td>
</tr>
<tr>
<td>vodní plocha</td>
<td>64367,1506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zástavba</td>
<td>8981,0714</td>
<td>2394,1194</td>
<td></td>
</tr>
<tr>
<td>Okruh 2 km</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>les</td>
<td>1659448,3927</td>
<td>3676041,4473</td>
<td>8759920,2640</td>
</tr>
<tr>
<td>louka</td>
<td>2096075,1720</td>
<td>1007100,3778</td>
<td>819399,1428</td>
</tr>
<tr>
<td>pole</td>
<td>3390483,7205</td>
<td>6708430,1036</td>
<td>1975278,7342</td>
</tr>
<tr>
<td>rozvolněný les</td>
<td>1000074,9751</td>
<td>960011,3117</td>
<td>857204,4023</td>
</tr>
<tr>
<td>vodní plocha</td>
<td>2009435,8577</td>
<td>24985,8004</td>
<td>32650,4526</td>
</tr>
<tr>
<td>zástavba</td>
<td>2319075,8809</td>
<td>193717,5278</td>
<td>121729,0422</td>
</tr>
<tr>
<td>pobřežní vegetace</td>
<td>124885,1312</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>