Modelling of niche: a case study on Central European root-hemiparasitic species

Pavel Fibichí, Jakub Těšitel ${ }^{\dagger}$, Petr Blažek ${ }^{\dagger}$, Francesco de Belloí, Milan Chytrý*, Jan Lepši
\dagger Faculty of Science, University of South Bohemir

* Faculty of Science, Masaryk University

The Czech republic
pavel.fibich@prf.jcu.cz

Root hemiparasites

- Green photosynthetic plants that parasitize on other plant species
- Highly ecologically significant
- effects on competitive relationships in host communities
- effects on nutrient cycling
- suppression of host growth
- some species considered "Ecosystem engineers"
- bUt we actually do not know, where they grow in the landscape, i.e. what is their ecological niche
- currently, just informal field experience

Specific questions

- In which plant communities do the hemiparasites grow?
- What are the species with which they co-occur?
- How is their pattern of occurrence related to environmental and functional traits gradients?
- Is their presence in communities associated with high species richness?

The data

- Stratified version of the Czech National Phytosociological Database
- over 30k reasonably independent relevés
- formal phytosociological classification into classes and alliances
- Mean annual precipitation and temperature data Databases
- List of Ellenberg indication values
- traits: LEDA, BiolFlor, Seed DB

Communities - Alliance(Class)

- B. alpina \# releves $=26$

Caricion canescenti-nigrae (RB) 10, Agrostion alpinae (AC) 8, Swertio perennis-Dichodontion palustris (RA) 6, ...

- E. ?stkoviana \# releves = 169

Violion caninae (TE) 38, Cynosurion cristati (TD) 28, Arrhenatherion elatioris (TD) 24, ...

- O. vernus \# releves = 194

Scleranthion annui (XB) 52, Juncion gerardii (TC) 34, Deschampsion cespitosae (TD) 15, ...
4. pre ten se \# releves = 377

Carpinion (32) 203, Trifolion medif (TC) 51, Quercion pubescenti-petrae (32) 50, ...

- R. mino \# releves = 435

Arrhenatherion elatioris (TD) 154, Calthion palustris (TD) 60, Molinion caeruleae (TD) 40, ...

Co-occurence with other species

- B. alpina \# releves $=26$
counts: Swertia perennis 19, Bistorta major 17, Allium schoenoprasum 16, ...
V score: Swertia perennis, Selaginella selaginoides, Allium schoenoprasum, ...
- E. rustkoviana \# releves = 169
counts: Achillea millefolium 130, Plantago lanceolata 128, Anthoxanthum odoratum 119, ...
V score: Polygala vulgaris, Leontodon hispidus, Thymus pulegioides, ...
O. ve nus \# releves = 194
counts: Taraxacum sect. 92, Ranunculus repens 89,
Tripleurospermum inodorum 75, ...
V score: Trifolium fragiferum, Lotus tenuis, Pulegium vulgare, ...
- R. mine \# releves = 435
counts: Plantago lanceolata 331, Achillea millefolium 330, Anthoxanthum odoratum 301, ...
V score: Briza media, Leontodon hispidus, Plantago lanceolata, ...

How to define the ecological niche?

Three groups of releves

Hemiparasite occurs here	Hemiparasite does not and cannot occur here, e.g. Rhi- nanthus in a fishpond
Q. 1) How th classify relevés in these groups?	

The Beals index approach

Beals index (probability of occurrence of species j in habitat i): $p_{i j}=1 / S_{i} \sum_{k} N_{j k} / N_{k}$ where S_{i} is species richness of habitat $i, N_{j k}$ number of joint occurrences of species j and k in database and N_{k} number of occurrences of species k in reference database.

Fig. 1. An example of translation of Beals index values at unoccupied habitats into percentiles of Beals inder values at occupied habitat. The upper histogram represents cumulative distribution of Beals inder istribution of Beals index alues at occupied habitats. The ower represents distribution of eals index values at unoccupied habitats. The arrows indicate the probability that an unoccupied habitat with given probability will be occupied that was derived from the distribution of Beals index values at the occupied habitats The scale used in actual calculations was much finer.

Munzbergova, Herben (2004) Identificaton of suitable unoccupied habitats in metapopulation studies using

The Beals index approach

Beals index (probability of occurrence of species j in habitat i): $p_{i j}=1 / S_{i} \sum_{k} N_{j k} / N_{k}$ where S_{i} is species richness of habitat $i, N_{j k}$ number of joint occurrences of species j and k in database and N_{k} number of occurrences of species k in reference database.

Munzbergova, Herben (2004) Identificaton of suitable unoccupied habitats in metapopulation studies using

Complications with Beals index

- Different vegetation types (classes/alliances) have different size of species pool and turnover patterns

Beals index is averaging that - doesn't work across vegetation classes (and maybe even alliances)
e.g. for Rhinanthus minor - too strict Festuco-Brometea in but too loose in Molinio-Arrhenatheretea (e.g. Calthion)

- constantly predicting a high probability of occurrence in dense Phragmites australis stands
- Beals index omputed separately f
class, where a hemiparasite occuis.
individ al class sets are pooled toge

NMDS of Rhinanthus minor

MeanTemperature

Ellen.Temperature

Ellen.Continentality

Ellen.Reaction

NMDS of Odontites vernus

MeanTemperature

Ellen.Light

Ellen.Temperature

Ellen.Continentality

Ellen.Moisture

Ellen.Nutrients

What to compare?

Hemiparasite occurs here
Hemiparasite
does not and
cannot occur
here, e.g. Rhi-
nanthus in a
fishpond
does not and cannot occur here, e.g. Rhinanthus in a fishpond
Q. 2) What ar the differences among the three group of rele But what to compare?

- Black vs. grey - no differences expected (and in fact detected)
- Black vs. grey+white - often compared but misleading
- Black+grey vs. white - this is relevant for the niche (beta-niche)!

Precipitation and temperature

Bartsia alpina

Euphrasia rostkoviana Euphrasia stricta

Melampyrum arvense

Melampyrum cristatum Melampyrum nemorosurMelampyrum pratense

Orthantha lutea
Odontites vernus

Rhinanthus alectorolophetshinanthus major

Rhinanthus minor

Melampyrum sylvaticu

Pedicularis sylvatica
Pedicularis palustris

Thesium linophyllon

Light gray -non presence, Dark gray - inside niche,
Green - presence

Annual precipitation

Ellenberg moisture and nutrients

Bartsia alpina

Melampyrum cristatum

Odontites vernus

Rhinanthus alectorolopheßthinanthus major

Melampyrum nemorosurmelampyrum pratense

Pedicularis palustris

Rhinanthus minor

Melampyrum sylvaticu

Pedicularis sylvatica

Thesium linophyllon

Light gray - non presence, Dark gray - inside niche,

Ellenberg moisture

Canopy height

Trait community weighted means (CWM) for black and grey relevés vs. all grassland relevés in DB.

SLA

Trait community weighted means (CWM) for black and grey relevés vs. all grassland relevés in DB.

Seed weight

Trait community weighted means (CWM) for black and grey relevés vs. all grassland relevés in DB.

Annuality

Trait community weighted means (CWM) for black and grey relevés vs. all grassland relevés in DB.

Associations with species richness

Difference of medians of \#species of (occupied - unoccupied)
Comparison between hemiparasites and other species (grey distribution).

Conclusions

- We managed to identify vegetation types where hemiparasites occur (easy)
- The ecological niche can be identified based on Beals index + formalized vegetation classification approach
- The niche and major environmental gradients within it can be visualized by NMDS
- Niche can be also defined by functional traits
- Some of the hemiparasites tend to be associated with species-rich vegetation

Questions

THANK YOU FOR ATTENTION. Questions and/or comments?

