D. Smith

Future work

The Model of Population Dynamics of Root Hemiparasitic Plants along a Productivity Gradient

Pavel Fibich and Jan Lepš

August 28, 2008

D. Smith

Future work

Outline

Mathematical models

D. Smith

Description, Results and Problems

Our model

Mortality Trophic functions Results

Future work

D. Smith

Future work

Mathematical models

- Description of some system in mathematic (eg. with differential equations)
- Model is always constrained
- Focus on the most important things
- Many simplifications
- Goal is formal representation of major parts of the system

Model of D. Smith ¹

• Autonomous system

$$\frac{dp}{dt} = p * (trophic_p(z_p) - mortality_p)
\frac{dh}{dt} = h * (trophic_h(z_h) - mortality_h)
z_p = r + \gamma * h
z_h = r - IMPACT * p
r = PRODUCTIVITY - p - h$$

- p, h biomass of parasite, host
- z_p, z_h available resources for parasites, hosts
- γ , IMPACT, PRODUCTIVITY are constants

¹Smith, D. 2000. The population dynamics and community ecology of root hemiparasitic plants.American Naturalist 155:13:23.

D. Smith ○●○

Future work

Model of D. Smith - result

Model of D. Smith - problems

- Constant mortality
- Increasing PRODUCTIVITY do not increase biomass of hemiparasitic plants
 - At high productivities is more important above ground competition
 - z_p = r + γ * h ⇒ hemiparasitic plants could grow well without host only on resources from soil, but for many hemiparasitic plants is hemiparasitic strategy obligatory

Future work

Our model - overview

Autonomous system

$$\frac{dp}{dt} = p * (trophic_p(z_p) - mortality_p(p)) \frac{dh}{dt} = h * (trophic_h(z_h) - mortality_h(h))$$

- p, h > 0 biomass of parasites, hosts
- t denotes time
- z_p, z_h available resources for parasites, hosts
- trophic_{p,h} trophic functions of parasites, hosts

Our model

Future work

Mortality

Definition

 $mortality_{p,h}(species) = species * CMORTALITY_{p,h}$

• $CMORTALITY_{p,h}$ denotes part of species biomass that returns to the soil

 $0 < CMORTALITY_{p,h} < 1$

 $CMORTALITY_h \ll CMORTALITY_p$ \Rightarrow $mortality_h(s) \ll mortality_p(s), \forall s > 0$

Future work

Host trophic function

trophic_h(z_h)

$$z_h = r - IMPACT * p$$

 $r = PRODUCTIVITY - p - h$

- $dtrophic_h(z_h)/dz_p > 0 \Rightarrow trophic_h(z_h) \nearrow$
- z_h available resources for hosts
- 0 < PRODUCTIVITY (richness) of the system
- $0 \le r \le PRODUCTIVITY$ available resources in the soil
- 0 < IMPACT impact of parasites on hosts

Parasite trophic function

(

. Smith 00 Future work

Parasite trophic function - formal

• $trophic_p(z_p)$, z_p is parabole (\nearrow)

$$z_{p} = \frac{h - CAPACITY_{h}/2}{2 * CPARABOLE} + CAPACITY_{p}$$

CPARABOLE = $-\frac{2 * CAPACITY_{p}}{(CAPACITY_{h}/2)^{2}}$

- *z_p* combination of resources from host (↗) and light availability (∖)
- CAPACITY_h < PRODUCTIVITY capacity of host
- CAPACITY_p < PRODUCTIVITY capacity of parasite

 $CAPACITY_p \ll CAPACITY_h$

Low PRODUCTIVITY and *Rhinanthus minor*

Low PRODUCTIVITY and *Rhinanthus minor*

D. Smith

 Future work

What is simplified

- Fixed productivity of system
- Symetric trophic function
- No disturbance
- No variability and distribution of individuals
- No distribution of resources from soil

 Future work

Example of phase plane

D. Smith

 Future work

). Smith

 Future work

D. Smith

 Future work

Our model ○

Future work

 Future work

Phase planes results

Attraction area is reducing along productivity gradient

- dependence on initial conditions, that lead to coexistence, is growing with productivity ⇒ chance to coexistence is decreasing along productivity gradient
- increasing productivity leads coexisting system to be less tolerant to disturbance

 Future work

Proportion of biomass of parasitic plants at stable point along a productivity gradient

D. Smith

 Future work

Relationship between the proportion of hemiparasitic plants and biomass of vascular plants ²

²Petru, M.,and J. Lepš made data analyse on Hadač, E. 1969. Die Pflazengesellshaften des Tales "Dolina Siedmich prameňov" in der Balear Tatra. [Plant communities of the valley "Dolina Siedmich prameňov" *in* the Belianske Tatry Mts.] Vydavatelstvo Slovenkej Akademie Vied, Bratislava.

Low PRODUCTIVITY and *Rhinanthus minor*

 Future work

Discussion

- We add 2 properties (dynamic mortality, aboveground competition) of original system that model of D. Smith has not
- Our model matches field observations, Petru, M. and J. Lepš result, Matthies result³ that with increasing productivity is abundance of hemiparasitic plants decreasing

³Matthies, D. 1995. Parasitic and competitive interactions between the hemiparasites *Rhinanthus serotinus* and *Odontites rubra* and their host *Medicago sativa*. Journal of Ecology 83:245-251.

D. Smith

Future work

Future work

- Focus on parasite trophic function and its combination with light availability function
- To cover and quantify other major parts of the system of hemiparasitic plants and their hosts

Questions?

