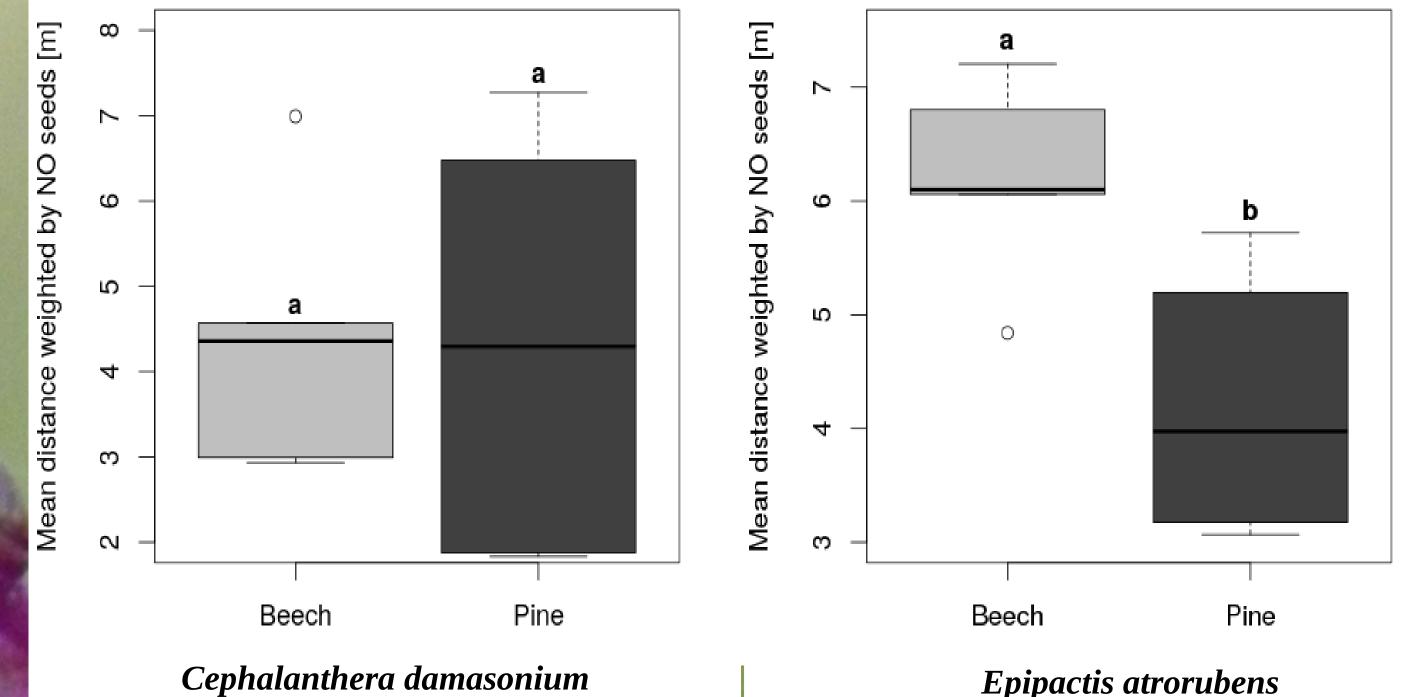
Seed dispersal abilities of forest orchids

Milan Kotilínek¹, Tamara Těšitelová¹, Pavel Fibich¹, Jiří Košnar¹, Zuzana Münzbergová^{2,3}, Jana Jersáková¹

¹Faculty of Science, Univ. of South Bohemia, České Budějovice, Czech Republic, ²Institute of Botany, Academy of Sciencies of the Czech Republic, Průhonice, Czech Republic, ³Faculty of Science, Charles University, Praha, Czech Republic


Introduction

The minute orchid seeds are often thought to be practically unlimited in their dispersal. However, our present knowledge on orchid seed dispersal shows a substantial decrease of seed rain with the distance from the mother plant. This conclusion based on few studies of meadow species suggests that impressive reports of long distance dispersal need to be regarded as rare cases. In forest habitats, the dispersal efficiency of windborne seeds might be even lower due to restricted air movement.

Data collection

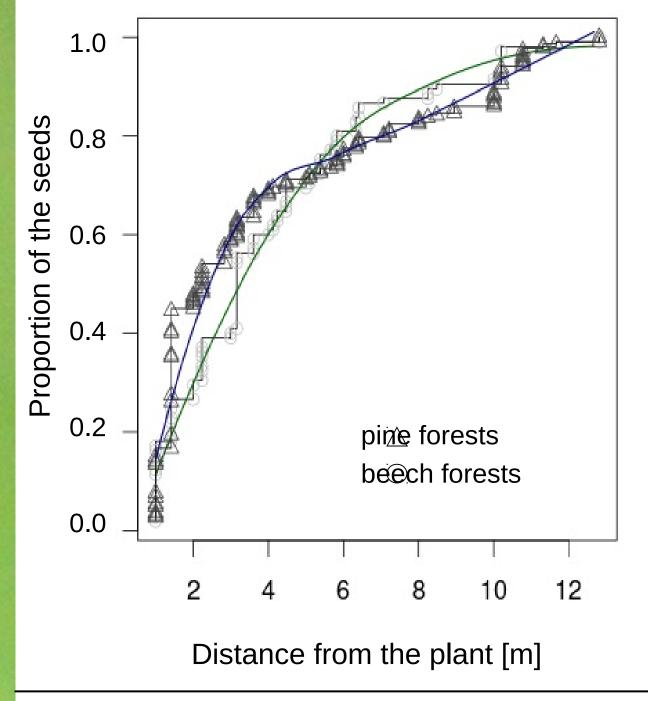
Seed traps:

We investigated seed dispersal of *Epipactis atrorubens* and *Cephalanthera damasonium* in two forest types - beech and pine forests (each in two replicates). The seed traps (sticky Petri dishes, 140 mm) were regularly spaced in a 20x20 m network laid around investigated plants (3 plots per site). The seed traps were exposed for four weeks and then scored under stereomicroscope. Position of each trap was geo-referenced. Differences in seed dispersal curves between forest types were compared

using the Mann–Whitney–Wilcoxon test. Microsatellites:

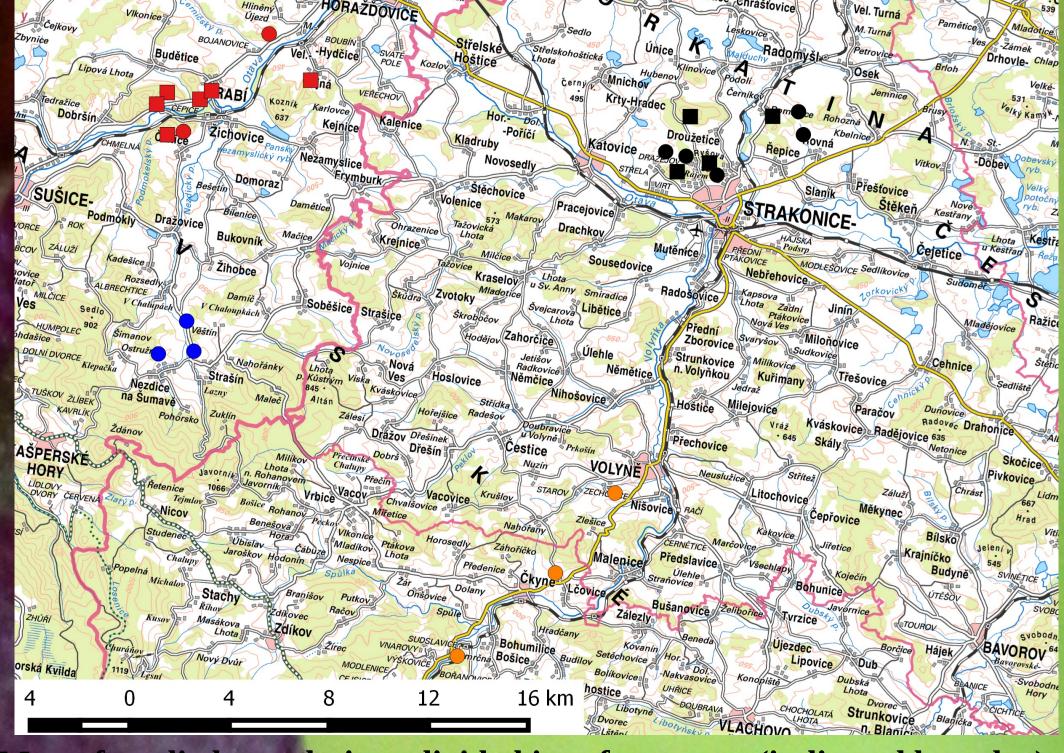
Our sampling covers 11 populations of *Cephalanthera rubra* (167 individuals) in two areas and 23 populations of *Epipactis atrorubens* (321 individuals) in four areas. Extracted DNA was used for amplification of 12 microsatellite loci for *C. rubra* and 10 micorosatellite loci for *E. atrorubens*. Data were processed by Arlequin 3.5, MSA 4.05 and ape, ade4 and adegenet packeges in R 3.2 software.

Results


The majority of seeds of both study species were found up to 6 or 7 m from the mother plants. Comparison of *E. atrorubens* seed dispersal curves between forest types suggested significantly wider dispersal ranges in the beech than pine forest. In distance up to 6 m from the mother plant, we found 53 % of all seeds in the beech forest, whereas in the pine forest, it was 85 % of all seeds. By contrast, there was no significant difference in seed dispersal curves of *C. damasonium*. AMOVA indicated a significant genetic differentiation between and within population, however not between areas. The low genetic differentiation can be explained by high levels of gene flow and low levels of drift. The global Mantel test across all population pairs did not show significant effect of isolation by geographical distance.

Source	df	SS	Est. Var.	0/0	D		
Cephalanthera rubra	ui		LSt. var.	70			
Among areas	1	13,2	0,035	1,3	-		
Among populations	Q	77 1	0 1 8 5	67	>0.001		

Box and whisker plots of the mean distances weighted by the number of seeds. Letters denotes significant differences (W=19, p=0.032) between forests by *E. atrorubens* and non-significant by *C. damasonium*.


Cumulative distribution curves of dispersed seeds in two forest types. Lines were fitted by loess smoother.

Epipactis atrorubens

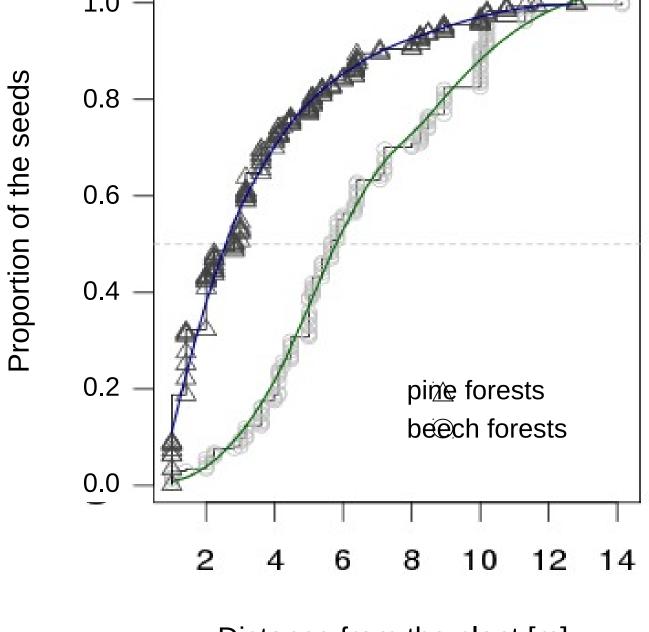
10	A 44 A-0

Map of studied populations divided into four areas (indicated by color). Symbols: square – site with both studied species, circle – *E. atrorubens* site.

Genetic variation and genotypic diversity in populations of *E. atrorubens* (left) and *C. rubra* (right).
N – number of ramets sampled, % – percent of polymorphic loci, Al – mean
number of alleles per locus, Ho – observed heterozygosity, He – expected
heterozygosity, G – number of genotypes, S – Simpson's diversity index

- mong populations		<i>i</i> _,_	.,		00001
Within populations	323	825,2	2,775	92,1	>0.001
Epipactis atrorubens					
Among areas	3	37,4	0,032	0,8	
Among populations	19	138,9	0,139	3,7	>0.001
Within populations	619	2222,6	3,590	95,5	>0.001
		A REAL PROPERTY OF A READ REAL PROPERTY OF A REAL P			

	2	222,6 3,590 95,5 >0
1		Results of analysis of molecular var (AMOVA).
	SH6	
	ST8	
	ST9	<
	SH3	Heatmap with NJ tree based on
	ST10	distance shows relationships be
	SH2	populations of <i>C. rubra</i> (left)
	ST11	<i>E. atrorubens</i> (down). Colors of popu
	SH1	
	SH5	names correspond with colors of ar
	SH7	map.
	SH4	


			N	%	Al	Но	He	G	S			Proportion of th	.6 —	
		ST1	19	100	7,5	0,65	0,74	19	0,95			on c	4	A
		ST2	20	90	7,6	0,70	0,74	20	0,95			0. orti	4 – 🏼 🎙	• /
		ST3	10	100	4,8	0,63	0,66	10	0,90			rop		A
		ST4	10	80	6,0	0,69	0,73	10	0,90			0.	2 - 🌋	L
		ST5	16	100	6,9	0,66	0,70	15	0,93					A
1	5	ST6	10	100	5,8	0,64	0,74	10	0,90			0.	0 _ *	
i's		SH7	20	90	7,5	0,70	0,75	20	0,95			-		
en	I	NE8	3	90	3,0	0,74	0,70	3	0,68				2	4
	I	NE9	1	60	2,0	1,00	1,00	1	0,00					Dictopor
on	I	NE10	19	80	7,3	0,65	0,75	19	0,95					Distance
in		CK11	6	90	3,8	0,63	0,68	6	0,83			Section 1		
		CK12	2	70	3,0	0,86	0,83	2	0,50		N	%	Al	Ho
		CK13	20	100	7,8	0,68	0,76	20	0,95	SH1	19	75	3,9	0,50
	9	SH14	19	50	7,4	0,69	0,75	19	0,95	SH2	20	75	4,4	0,44
		SH15	20	100	7,5	0,66	0,73	20	0,95	SH3	20	83	4,1	0,51
		SH16	18	90	7,2	0,67	0,72	18	0,94	SH4	20	83	5,3	0,46
		SH17	20	100	7,6	0,60	0,74	20	0,95	SH5	20	83	5,0	0,45
	5	SH18	20	90	7,3	0,70	0,76	20	0,95	SH6	4	75	2,8	0,69
	5	SH19	20	100	7,2	0,66	0,74	20	0,95	SH7	20	83	5,5	0,50
		SH20	19	90	7,1	0,62	0,71	19	0,95	ST8	2	75	2,6	0,61
		ST21	4	100	3,7	0,73	0,71	3	0,63	ST9	15	92	4,5	0,51
		ST22	5	90	3.8	0,64	0.69	5	0,80	ST1	0 20	83	3,8	0,56

0,69

20

100

6,5

Distance from the plant [m]

He

0,53

0,59

0,51

0,54

0,55

0,58

0,63

0,67

0,58

0,57

G

15

16

10

17

18

20

Sim

0,92

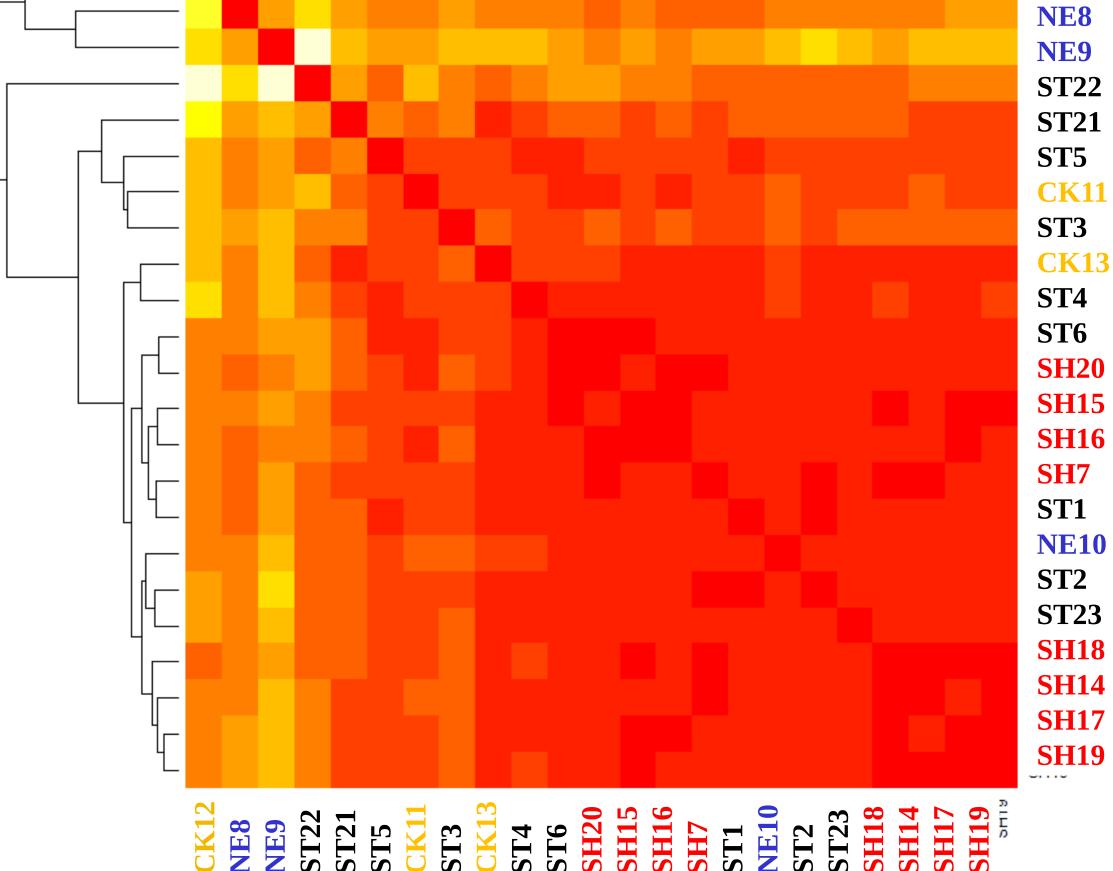
0,93

0,78

0,94

0,94

0,63


0,95

0,50

0,90

0,83

0,78

Summary
 There is significant difference in *E. atrorubens* seed dispersion curves between beech and pine forests.

0,95

 The majority of seeds of both study species were found up to 6 or 7 m from the mother plants

• Results of microsatellites analyses suggest, that seeds are rarely but regularly transferred on long distance (over 15 kilometers) between populations

 Transfers of seeds from large populations (hundreds or thousands of individuals) enable to preserve genetic diversity of smaller populations (dozens of individuals) and surviving of small (up to twenty individuals) populations

The research was supported by Grant Agency of Czech Republic No. 14-21432S

ST11 7

75

3,3 0,53