
Be in shell
Mostly complete slides

Pavel Fibich

pavel.fibich@prf.jcu.cz
dep. Botany - Na Zlaté stoce 1

02-2016

Course motivation

Why to have such course in the bioinformatics study program?
bioinformaticians are working with big and complex data, e.g. one
pair read of tick genome in fasta sanger 1.9 format has 250 Gb
there is need to easy manipulate, filter, sort, ... process big data

Linux shell is
powerful, there are many tools for files, text and other
manipulations
reusable and fast, writting script avoids repeating Excel clicking
widespread as platform, many bioinformatics toos are written for
linux
common in computational centers where you can use parallel
processing of data

Be in shell allows you to program on steroids (fast writting of fast and
powerful tools).

pavel.fibich@prf.jcu.cz Be in shell introduction 2 / 137

Course introduction

Goals of the course:
be able to work under linux shell (i.e. bash) and use its power
know and do not hesitate to use bash scripting, sed, AWK,
GNUplot, R, python or perl
BUT NOT to make linux administrators from you

How to make it:
lectures every second week on Wed 13:15 – 15:30 at BB-7 room
combination of theoretical and practical parts
few practical homeworks influence final score
final exam as discussion

No attendence checking!

pavel.fibich@prf.jcu.cz Be in shell introduction 3 / 137

Be in shell

pavel.fibich@prf.jcu.cz Be in shell introduction 4 / 137

Materials

Shell scripting as ”Be in shell”
Course materials at http://botanika.prf.jcu.cz/fibich/teaching.html

Mostly all books about linux have some chapter about shell
scripting
Many online tutorials, just look for it
books

Blum R. (2008) Linux Command Line and Shell Scripting Bible.
Wiley.
Burtch K.O. (2004) Linux Shell Scripting with Bash. Sams
Publishing.
Sobell M.G. (2009) Practical Guide to Linux Commands, Editors,
and Shell Programming. Prentice Hall.

pavel.fibich@prf.jcu.cz Be in shell introduction 5 / 137

http://botanika.prf.jcu.cz/fibich/teaching.html

Program – working version

17.2. Introduction, work space, shells.
Files, series of commands, output.
2.3. Variables, arithmetic expansion.
Script basics, compound commands, if-else
16.3. Training on exercises
Compound commands, loops, signals, Homework 1
30.3. Text files manipulations, regex, sed
AWK, Homework 2
13.4. Big exercise
GNUplot
27.4. R, Python, Perl,
Big exercise 2, Homework 3
11.5. Questions
Final exam - the first and recommended try.

pavel.fibich@prf.jcu.cz Be in shell introduction 6 / 137

Keywords

Unix is operating system, has many variants
POSIX family of standards

Linux is Unix-like and POSIX-compliant operating system
(Debian, Ubuntu, ...)

shell is user interface for accessing services of operating
system (CLI or GUI)

sh is Bourne shell default in Unix systems
bash is Unix shell command line processor, default in Linux

and MAC OS X, free replacement of sh
csh is C shell, syntax closer to C language

linux console (tty) is single user way how get/send
infromations/commands from/to linux kernel
terminal is program that runs shell

xterm is terminal emulator for X window system

For the beginning, shell ∼ bash ∼ terminal assume as the same.
pavel.fibich@prf.jcu.cz Be in shell shells 7 / 137

Bash in general

www.gnu.org/software/bash

bash means Bourne-again shell
command language interpreter written by Brian Fox, first released
1989
widely distributed, even ported for MS Windows and cygwin
typically runs in text window
sh-compatible shell that incorporates useful features from the
Korn shell (ksh) and C shell (csh)
supports filename wildcarding, piping, command substitution,
variables and control structures for condition-testing and iteration
keywords, syntax and other basic features of the language were
all copied from sh
GNU GPL version 3

pavel.fibich@prf.jcu.cz Be in shell shells 8 / 137

http://www.gnu.org/software/bash

Workspace - playground

$ pwd
?

Ideally, to have own linux machine, or virtual one, with bash.

If you affraid of linux, use application VirtualBox (www.virtualbox.org), create
virtual machine and install of Debian or Ubuntu (or use some live linux,
eg. Ubuntu). Mostly you need to get iso image with linux installation
and attach it to the virtual machine to boot from it.

pavel.fibich@prf.jcu.cz Be in shell linux start 9 / 137

https://www.virtualbox.org/

Where to start?

Log in linux OS and run terminal. You will get to command line, it often
ends with $. After $, you can write commands, e.g. whoami
pvl@bartsia:˜$ whoami # what is my user name
pvl
pvl@bartsia:˜$

part before $ is mostly omitted (often
USERNAME@COMPUTERNAME:ACTUALFOLDER,
where ∼ is alias for HOME directory)
after $, there are commands written
line without $ is the output of previous command, e.g. value of
variable, content of file, . . .
after #, there are comments written, they are not interpreted (run)
by shell

pavel.fibich@prf.jcu.cz Be in shell linux start 10 / 137

Few starting commands

$ date # actual date
Mon Jan 27 14:17:28 CET 2014
$ ls # list of files in the current folder
myfile
$ cat myfile # print content of file myfile

Nice day!
Nice shell!
$ grep day myfile # print lines having word day in file myfile

Nice day!
$ env # print list of all actual variables
...
$ echo $SHELL # print content of variable SHELL
/bin/bash
$ ps # snapshot of processes of current shell
PID TTY TIME CMD

21356 pts/0 00:00:00 bash
21399 pts/0 00:00:00 ps

pavel.fibich@prf.jcu.cz Be in shell linux start 11 / 137

Manuals - where to find help

We should start with man command for manual
$ man man # manual pages of command man

$ man grep # manual pages of command grep

$ apropos grep # search for keyword grep

$ info grep # different informations about grep
$ grep --help # the most of commands have --help option

Mans have their options too (e.g. manual sections of man command,
see man man)
$ man passwd # passwd command changes password
$ man 5 passwd # man about password file

Task
Always look at the man pages of the commands you are using (e.g.
man grep), until you will get used to use them. man bash is quite
compressive long winter nights article about what we will use.

pavel.fibich@prf.jcu.cz Be in shell linux start 12 / 137

Linux file system - paths

Paths of folders and files are in linux separated by / (forward
slash).
Absolute path is full path from root (like in Windows from C:), e.g.
/etc/profile
/home/pvl/bash/myFolder

Relative path starts from the actual folder (denoted by ., you can
get it by pwd command), e.g.
./myFolder/myfile # . is actual folder
../pvl/myfile # .. is folder above the actual folder

If no path with / or . is specified, than actual folder is assumed
We will often work in some folder in home directory (denoted by
∼) of the user
pvl@bartsia:˜/Documents/prf.jcu/bash$ pwd # print work dir
/home/pvl/Documents/prf.jcu/bash

pavel.fibich@prf.jcu.cz Be in shell paths 13 / 137

Files and Directories

Directories are rooted (start) in the / (slash)
$ pwd # print actual directory
/home/pvl/Documents/prf.jcu/bash/c1
$ ls -a # list of all files in the current directory
. .. myfile
$ cd .. # go to the parent directory
$ pwd
/home/pvl/Documents/prf.jcu/bash
$ cd c1 # go to c1 directory
$ pwd # print actual directory
/home/pvl/Documents/prf.jcu/bash/c1
$ ls -a / # list of files in the file system root
...

If path is not specified, files/directories in the current folder are
assumed!

Task
Look what is in the file system root folders (ls -a /).

pavel.fibich@prf.jcu.cz Be in shell paths 14 / 137

Directories and files - manipulation and access

$ mkdir mydir # creates directory
$ rmdir mydir # deletes empty directory
$ rm -r mydir # deletes directory recursively (everything inside)
$ cp file newfile # copy file in the same dir
$ cp file /home/pvl/somewhere # copy file into absolute path
$ mv file ./folder/newfile # rename/move file or directory to new path
$ rm file # remove file

Access rights - filetype, 3x(read, write, execute) for user,group,others
$ ls -la
total 12
drwxr-xr-x 2 pvl pvl 4096 Jan 29 09:32 .
drwxr-xr-x 3 pvl pvl 4096 Jan 29 09:32 ..
-rw-r--r-- 1 pvl pvl 22 Jan 22 21:28 myfile

Task
Look at /dev for more filetypes.

pavel.fibich@prf.jcu.cz Be in shell paths 15 / 137

Directories and files

$ file myfile # file type info
myfile: ASCII text, with very long lines
$ chmod a+rx myfile # modifying access rights, all can rx (read execute)
$ chmod go-rwx myfile # group cannot rwx
$ wc -l myfile # print number of lines
104 myfile
$ ln -s myfile linkfile # create pointer to file, link
$ ls -la # print all files with details
drwxr-xr-x 2 pvl pvl 4096 Jan 29 10:45 .
drwxr-xr-x 3 pvl pvl 4096 Jan 29 10:45 ..
lrwxrwxrwx 1 pvl pvl 6 Jan 29 10:45 linkfile -> myfile
-rw-r--r-- 1 pvl pvl 3828 Jan 29 10:01 myfile
$ ls -ltr # list according date, reversally
...

Symbolic links are very useful, you can link also folders and do not
need extra copies.

pavel.fibich@prf.jcu.cz Be in shell paths 16 / 137

When shell starts up

Default shell of the user is mostly defined in the file /etc/passwd
$ grep pvl /etc/passwd # print lines with word pvl in file passwd

pvl:x:1000:1000:Pavel Fibich,,,:/home/pvl:/bin/bash

When shell starts, it runs startup files (distribution specific) to initialize
itself.

/etc/profile – system specific settings
/etc/bash.bashrc – shell specific settings
∼/.profile – user specific settings
∼/.bashrc and .bash * files) – user shell specific settings

If you want to make some user specific changes, do it in ∼/.bash *
or ∼/.bashrc files!

pavel.fibich@prf.jcu.cz Be in shell shell start and env 17 / 137

Bash settings * - tunning of shell

Many bash settings is done by set or shopt commands (running the
commands print the list of settings or options). Some useful settings

do not allow overwriting files
$ set -o noclobber # not allow
$ set +o noclobber # allow

emacs (default) or vi options define differences of command
prompt behaviour
$ set +o vi

xtrace verbose set debugging or verbose mode
$ set -o xtrace
$ set -o verbose # print command before execution

dotglob filenames starting with . or .. do not match using
wildcards
$ set -o dotglob

pavel.fibich@prf.jcu.cz Be in shell shell start and env 18 / 137

Bash shortcuts - working faster

UP and DOWN keys are used for the listing in the past commands
two TAB keys find matching file name (e.g. write whoa and then
press TAB twice)
CTRL + R searches in the history of command line (e.g.
∼/.bash history), press it and write w, then you can press it
again for later appearance, or press enter and UP/DOWN
!CMD runs last matching command CMD from history (!! runs last
command), e.g.
$!w
whoami
pvl
$ history # print history of commands
...

selected text in the shell, can be pasted by middle button of the
mouse

pavel.fibich@prf.jcu.cz Be in shell shell start and env 19 / 137

Exercise

Exercise
decide where to work: using linux machine or virtual one
run shell and try presented commands
prepare environment where you will work under linux (eg. get
used with linux environment - set wifi connection, create directory
for the course, make shortcut for running of terminal)
look briefly at man pages of already mentioned commands
go through the actual and one future lesson

pavel.fibich@prf.jcu.cz Be in shell shell start and env 20 / 137

envir and commands

environment and commands

pavel.fibich@prf.jcu.cz Be in shell shell start and env 21 / 137

Users and system info

$ id # print user and group ids (see /etc/group)
uid=1000(pvl) gid=1000(pvl) groups=1000(pvl),24(cdrom)

,25(floppy),29(audio),30(dip),44(video),46(plugdev)
,105(scanner),110(bluetooth),111(netdev),123(scard)

$ w # show who is logged on and what they are doing
09:46:13 up 3 days, 15:21, 9 users, load average: 0.23,

0.23, 0.23
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
pvl pts/0 :0.0 Tue19 12:35m 0.05s 0.05s bash
pvl pts/1 :0.0 Tue20 12:47m 0.34s 0.02s vim disk26
...
$ uname -a # show machine characteristics
Linux bartsia 3.8-trunk-amd64 SMP Debian 3.8.3-1˜

experimental.1 x86_64 GNU/Linux

Task
Look at /proc/ files to get more information (e.g. cat
/proc/cpuinfo)

pavel.fibich@prf.jcu.cz Be in shell user and sys 22 / 137

Printing and editing

$ head myfile # print 10 first lines from file
...
$ tail -n 5 myfile # print 5 last lines from file
...
$ less myfile # for reading the file
$ nano myfile # simple text editor (or use pico)
$ vim myfile # editor preferred by linux guru ¨̂

Shell often have many editors:
nano www.nano-editor.org - CTRL+x to exit, CTRL+o to write actual state
Emacs www.gnu.org/emacs/

vi, vim www.vim.org/

two states : press i (insert) or ESC (command)
:wq to save and exit
:!q to not save and exit

Task
Get familiar with some text editor!

pavel.fibich@prf.jcu.cz Be in shell editing 23 / 137

http://www.nano-editor.org/
http://www.gnu.org/emacs/
http://www.vim.org/

Text manipulation and printing

Files manipulation and info
$ sort myfile # sort file
...
$ uniq myfile # unique lines
...
$ diff myfile newfile # differences of files
...

Text printing
$ echo "hello" # print text
$ printf "%d\n" 5 # C like print as digit (integer)
5
$ printf "%f\n" 5 # print as float
5.000000
$ printf "There are %d dogs and %d cats.\n" 3 2
There are 3 dogs and 2 cats.
$

pavel.fibich@prf.jcu.cz Be in shell editing 24 / 137

Exercise

Exercise
run following command, it will download file ideff.csv
$ wget http://botanika.prf.jcu.cz/fibich/ideff.csv

or if you do not have wget installed, try curl
$ curl http://botanika.prf.jcu.cz/fibich/ideff.csv >

ideff.csv

try to list (print) the file, print only the first 3 lines
count number of lines of the file
try to edit the file
create new directory and copy the file in
delete the directory
look briefly at man pages of used commands
try and read all Tasks

pavel.fibich@prf.jcu.cz Be in shell editing 25 / 137

Sequence of commands - background

We can write more commands in one line separated by ;
$ pwd; wc -l myfile; cat myfile

We can easily run command in background (append &), or during
running of command press CTRL+z to suspend and than write bg to
move to background or fg to move it to foreground
$ ls -la & # run ls in background
[1] 18472
...
[1]+ Done ls --color=auto
$ sleep 20 & # run sleep for 20 s in background
[1] 18511
$ sleep 30 &
[2] 18512
$ jobs # print jobs in background
[1]- Running sleep 20 \&
[2]+ Running sleep 30 \&
$ kill 18512 # force end the job with given PID

pavel.fibich@prf.jcu.cz Be in shell more commands 26 / 137

What to do with the output? - pipe

One of the first options, when we want to combine commands, is the
pipe (|). It takes output of one command as input for the next
command (redirection between commands)
$ grep cpu /proc/cpuinfo | wc -l
16
$ ls -la | head -n 2 # print first two lines from ls command
total 12
drwxr-xr-x 2 pvl pvl 4096 Jan 29 10:28 .
who print who is logged, tee send output to std. out and to file
$ who | tee log.txt | grep "2014-02-03"
pvl pts/4 2014-02-03 20:33 (:0.0)
$ wc -l log.txt # number of lines in the log.txt

4 log.txt

Task
Run commands separately and check their inputs and outputs.

pavel.fibich@prf.jcu.cz Be in shell more commands 27 / 137

What to do with the output? - redirection

Output redirection to (>) /from (<) file
$ ls -la > myfile # redirect std. output into file
$ ls -la >> myfile # append std. output at the end of file
$ cat < myfile # redirects file to the command

Commands have also error output
$ ls -la /nonsense > myout # non-existing directory, nothing redirected
$ ls -la /nonsense 2> myout # good redirecton of error output
$ ls -l * 1> stdout 2> stderr # separating outputs

To combine std. and error output use &>.
Commands also set variable $? (return value of the last command)
$ ls -la / &>/dev/null; echo $?
0
$ ls -la /nonsense &>/dev/null; echo $?
2
$

pavel.fibich@prf.jcu.cz Be in shell more commands 28 / 137

Files exercise

Run following commands to generate input for exercise
$ mkdir fexer; cd fexer
$ touch {a..e}file; touch {1..26}new

Exercise
count files in the folder
print reversaly sorted list of files (one per line)
from the list, print names of the last 4 files and then the first 3 files
count all files in the folder and files having ”1” in name (e.g. by
grep)
delete folder fexer
where it is possible try to use both, redirection and pipe
go through the actual and future lesson

pavel.fibich@prf.jcu.cz Be in shell more commands 29 / 137

variables

variables

pavel.fibich@prf.jcu.cz Be in shell more commands 30 / 137

What to do with the output? - variables

Output of the command can be stored as variable too. They are faster
than files, because they are stored in memory.
$ Y=5 # set variable Y to 5
$ echo $Y # print variable Y, must use $
5
$ X="ls -l | wc -l; $Y"; echo $X # double quotes
ls -l | wc -l; 5
$ X=’ls -l | wc -l; $Y’; echo $X # quotes (apostrophes)
ls -l | wc -l; $Y
$ X=‘ls -l | wc -l; $Y‘; echo $X # backquotes (key left from 1)
bash: 5: command not found
4
$ unset Y; echo $Y # unset variable Y

$ set | less # list in set of variables

Double and single quotes define text (variable substitution is possible
only for the first). Back quotes or $() are used for running command
inside them.

pavel.fibich@prf.jcu.cz Be in shell variables 31 / 137

declare variables

In Bash, we can also use declare
$ declare COST
$ COST=5
$ declare -x COST=5 # equiv for export COST=5, see slide about visibility

Variables are stored as strings, we can specifie the type of variable
$ declare -i COST=5 # integer type
$ declare -rx COST=5 # read only exported variable

Substring of variable
$ MYV=tmp/filesID345561for.csv
$ echo ${MYV:9:8} # name, offset, length
ID345561

Task
Small difference can do a lot of troubles. Check difference X=‘wc -l
file‘ and X=‘cat file | wc -l‘.

pavel.fibich@prf.jcu.cz Be in shell variables 32 / 137

Variables in practice

Exercise
create variable MN and use whoami to set it
create variable MR and set as the number of files in /
create var MRI like MR, but only from files having i in the name
create var AVAR and set it to ”Hello dear”
create var BVAR and set it to value of AVAR + MR, and print it
check differences
$ printf "\%s\n" $BVAR; printf "\%s\n" "$BVAR"
$ echo $BVAR; echo "$BVAR"; echo ’$BVAR’

if you store command in variable, how to run it? e.g. cat
/proc/cpuinfo

for A=pwd; B=’$A’ try to print B, and using B force substitution
of its value by eval (run command stored in A)

pavel.fibich@prf.jcu.cz Be in shell variables 33 / 137

Array variables

Bash supports one dimensional array variable. Subscripts are integers
from zero.
$ NAMES=(max helen sam zach)
$ echo ${NAMES[0]} # print first element
max
$ echo ${NAMES[*]} # print all elements as one value (for array use @)
max helen sam zach
$ declare -a A=’([0]="xy" [1]=yv [2]=vz)’
$ farm=(dog cat sheep cow)
$ echo ${farm[@]}
dog cat sheep cow
$ X=(*) # create array from files in the folder

You can check the length
$ echo ${#A[*]} # length of array
3
$ echo ${#NAMES[1]} # length of element
5

pavel.fibich@prf.jcu.cz Be in shell variables 34 / 137

Variables defaults and messages

We can check for default values. a-c are not set.
Offering default
$ echo ${a:-myval} # if not set use default
myval
$ echo $a; a=new; echo ${a:-myval}

new

Set default
$ echo ${b:=$(whoami)} # if not set use default
pvl
$ echo $b; b=new; echo ${b:=$(whoami)}
pvl
new

Testing if variable is set
$ cd ${c:?Variable is not set at $(date +%Y)}
bash: c: Variable is not set at 2014

pavel.fibich@prf.jcu.cz Be in shell variables 35 / 137

Variables visibility

Visibility of variables is limited
$ XYVAR=7; echo $XYVAR # set and print variable
7
$ env | grep XYVAR # XYVAR is not in env. vars
$ bash # run new shell
$ echo $XYVAR # print varibale

$ exit # exit shell

Using environmental variables (evailable through env)
$ export XYVAR=6; echo $XYVAR # add varible to ... and print
6
$ env | grep XYVAR # XYVAR is in evn. vars.
XYVAR=6
$ bash
$ echo $XYVAR
6
$

pavel.fibich@prf.jcu.cz Be in shell variables 36 / 137

Wildcards

If we do not want to the specify exact name, we can use wildcards
* - no, one or many characters
? - one character
[] - range of characters, e.g. [a− z], [1− 9], [a− d , x − z], [145]

$ ls *file # list files ending with ”file”
linkfile myfile
$ ls myfil? # list files having one character after ”myfil”
myfile
$ ls fi* # list files starting fi
fi1 fi1234 fi2 fi3
$ ls fi[1-2]
fi1 fi2
$ ls fi[1-2]*
fi1 fi1234 fi2
$ ls fi[ˆ1-3] # caret for excluding
fia fiA fib

pavel.fibich@prf.jcu.cz Be in shell variables 37 / 137

Wildcards in practice

Run following commands to generate input for exercise
$ mkdir wexer; cd wexer
$ touch max{a..d}; touch max{1..16}

Brace expansions {a..d},{one,two,three}, {1..100} generate lists.

Exercise
create variable mymax, set it to max* and print the exact value
create array variable and store there all files having at least one
digit in the name, print the array and its lenght
save list of file names having exactly one digit in the file out.txt and
variable wout, then print file out.txt and variable wout
delete files having two digits in the name and count them
generate 213 files, in form my1file, my2file, ...
my213file and store their names in file maxa

print content of all files having a in the name

pavel.fibich@prf.jcu.cz Be in shell matching 38 / 137

Wildcards in practice solutions

Exercise
create variable mymax, set it to max* and print the exact value
mymax=max*; echo "$mymax"

create array variable and store there all files having at ..
a=(max[0-9]*); echo ${a[*]}; echo ${#a[*]}

save list of file names having exactly one digit in the
wout=$(ls max[0-9] | tee out.txt);
echo $wout;cat out.txt

delete files having two digits in the name
rm max[0-9][0-9]

generate 213 files, in form my1file, my2file, ...
touch my{1..213}file

pavel.fibich@prf.jcu.cz Be in shell matching 39 / 137

String matching

Bash provides string pattern matching operators that can manipulate
pathnames and other strings.

minimal matching prefix #
$ MV="34 wild dog, calm sheep, bad cat"
$ echo ${MV#*,}
calm sheep, bad cat

maximal matching prefix ##
$ echo ${MV##*,}
bad cat

% and %% is used for minimal and maximal matching suffixes,
respectively
$ echo ${MV%%,*}
34 wild dog

pavel.fibich@prf.jcu.cz Be in shell matching 40 / 137

Arithmetic expression

let command performs math calculations and expects string
$ let "SUM=5+5"; printf "%d" $SUM
10
$ let "SUM=SUM+3"; echo $SUM
13
$ let "SUM++"; echo $SUM
14
$ let "RES=SUM!=14"; echo $RES
0
$ let "RES=SUM!=1"; echo $RES
1
$ let "RES=SUM<20"; echo $RES
1

We can also combine let with other commands
$ let X=‘cat ideff.csv | wc -l‘; echo $X
15
$ let X=‘cat ideff.csv | wc -l‘*2; echo $X
30

pavel.fibich@prf.jcu.cz Be in shell arithmetic 41 / 137

More expansions

Arithmetic expansion by $((exp)), without $ you get only status code
$ cat my60
#!/bin/bash
echo -n "How old are you? "
read age # wait for input from user
echo "Wow, you have $((60-age)) years to sixty!"
$./my60
How old are you? 10
Wow, you have 50 years to sixty!

(()) evaluates arithmetic expr., by $ you get output the value
$ x=5 y=8; echo $((2*$x + 10*y)) # $ in brackets is not necessary
90
$ ((w=x*y)); echo $w # we did not used $ because of setting w
40
$ myvar=$(($(wc -l < /proc/cpuinfo) - 100))
$ echo $myvar
4
$ ((x*y)) # how you get output from the expr?

pavel.fibich@prf.jcu.cz Be in shell arithmetic 42 / 137

Exercise on expansions and arithmetics

Exercise
get data by
$ wget http://botanika.prf.jcu.cz/fibich/ideff.csv

create variable containing the last line of the file
create variable corresponding day of week (1..7); 1 is Monday
create a variable and set it to 3 * (times) number of lines of the file
print first half of the file (lines 1 to N/2)
from the last line of the file, get value of the last column (columns
are separated by commas, try string matching)
create variable for the count of all variables in the current shell
(check set)

pavel.fibich@prf.jcu.cz Be in shell arithmetic 43 / 137

Exercise on expansions and arithmetics

Exercise
check differences in values of Z, S, T and R
$ wget http://botanika.prf.jcu.cz/fibich/ideff.csv
$ Z=1+1
$ Z=$(1+1)
$ Z=$((1+1))
$ Z=$[1+1]
$ let S=Z+cat ideff.csv| wc -l
$ let T=Z+‘cat ideff.csv | wc -l‘
$ let "R=Z+‘cat ideff.csv| wc -l‘"

how to do more complicated math? try | bc -l and set variable
to the result of 2/3
write command that sets variable to the number of lines of some
file minus 1 and divided by 2
go through all exercises
read next slides before the lesson

pavel.fibich@prf.jcu.cz Be in shell arithmetic 44 / 137

script basics

script basics

pavel.fibich@prf.jcu.cz Be in shell script basics 45 / 137

Short recapitulation

Recapitulation
quotes and double quotes are used for texts (second one allow
variable substitution)
$ MVAR="whoami"; echo $MVAR
whoami

back quotes and $(..) run commands
$ MVAR=$(whoami); echo $MVAR
pvl

$[..] and $((..)) do arithmetic expansions
$ MVAR=$((2+2)); echo $MVAR
4

{1..100}, {a..g}, ... generate lists
file[1-9], *.pdf, ... wildcards can be used for general
patterns
script should have x rights to allow running

pavel.fibich@prf.jcu.cz Be in shell script basics 46 / 137

Script basics

Our first script is the sequence of commands
$ cat whoson
#!/bin/bash
date
echo "Currtely logged in users"
who
$

#! defines interpreter for script (can be bash, sh, python, R, ...)
$ ls -l whoson
-rw-r--r-- 1 pvl pvl 53 Feb 4 10:06 whoson
$./whoson
bash: ./whoson: Permission denied
$ chmod u+x whoson # add permissions to run script
$./whoson
Tue Feb 4 10:06:56 CET 2014
Currtely logged in users
...

pavel.fibich@prf.jcu.cz Be in shell script basics 47 / 137

Script basics

How to run script (or binary) without path is defined in variable PATH
$ echo $PATH
/usr/local/bin:/usr/bin:/bin
$ whoson
bash: whoson: command not found
$ export PATH=‘pwd‘:$PATH # prepend actual directory into PATH
$ whoson
Tue Feb 4 10:06:56 CET 2014
Currtely logged in users
...
$

Few commands for searching where command come from
$ which ls # locate command
/bin/ls
$ whereis ls # locate binary, source and manuals for command
ls: /bin/ls /usr/share/man/man1/ls.1.gz
$ locate ldd # find files by name
...

pavel.fibich@prf.jcu.cz Be in shell script basics 48 / 137

Script running

Several ways how to run script
$./script.sh
$ bash script.sh
$. script.sh # copy script in the current env.
$ source script.sh # . is abbrevation for source

Debugging by argument to bash

-n no execution: checks syntax errors without execution
-x debuging: turn debugging mode (remember set -o xtrace)
(advanced) watching single variable by trap
#!/bin/bash
declare -i CNT=0
trap ’: CNT is now $CNT’ DEBUG
while [$CNT -lt 3] ; do

CNT=CNT+1
done
$ bash -x ./trap.sh

pavel.fibich@prf.jcu.cz Be in shell script basics 49 / 137

Exercise on scripts

Exercise
Run
$ mkdir escripts; cd escripts; touch {a..k}files;

write command or script that prints how many times it was
executed
store the names of all files in the file one per line and all in one line
write script that count all files in the current folder and store value
in the variable MFI (use export to make variable visible)
improve the script that it stores actual date and the count at the
end of file mfi.log (both at one line), check it be re-running
generate some new files (e.g. by 1..20news) and improve the
script to print message about the difference from the previous
value of MFI and chek if it works
try to debug your script (e.g. by -x option to bash)

pavel.fibich@prf.jcu.cz Be in shell script basics 50 / 137

Exercise on scripts solutions

Exercise
store the names of all files in the file one per line and all in one line
ls > all; echo $(ls) > one

write script that count all files in the current folder and store it as ...
MFI=$(ls|wc -l) # that run $. scriptName

improve the script that it stores actual date and the count at the ...
MFI=$(ls|wc -l); echo "‘date‘ $MFI" >> mfi.log

generate some new files (e.g. by 1..20news) and improve ...
MFIO=$MFI; MFI=$(ls|wc -l); MDI=$((MFI-MFIO));
echo "‘date‘ $MFI $MDI" >> mfi.log

try to debug your script (e.g. by -x option to bash)
head -n 1 script.sh
#!/bin/bash -x

pavel.fibich@prf.jcu.cz Be in shell script basics 51 / 137

control structures

control structures

pavel.fibich@prf.jcu.cz Be in shell control structures 52 / 137

if then else fi

To control flow of commands, we can use if test-command then..else..
structure
$ cat mytest
echo -n "Write a: "; read a
echo -n "Write b: "; read b
if test $a == $b; then # check man pages of test
echo "Match!"
else
echo "Do not match!"

fi
$./mytest
Write a: a
Write b: a
Match!
$

else part is not necessary, and we can also add elif part with
test-command

pavel.fibich@prf.jcu.cz Be in shell control structures 53 / 137

if then else

Check the number of script arguments ($#)
$ cat cat chkargs
if test $# -eq 0; then
echo "Supply arguments!"
exit 1;

else
echo "First argument of $0 is $1"

fi
$./chkargs
Supply arguments!
$./chkargs hello
First argument of ./chkargs is hello

Warnings
Always check arguments!

pavel.fibich@prf.jcu.cz Be in shell control structures 54 / 137

test command

Many options to check files, their permissions, arithmetic, ...
$ ls -l mytest*
-rwxr--r-- 1 pvl pvl 131 Feb 4 15:05 mytest
$ test -e mytest; echo $? # test of file existence
0
$ test -e mytestNONE; echo $? # non existing file
1
$ test ! -d mytest; echo $? # test for NON directory, ! for negation
0
combined conditions -a for AND and -o for OR
$ test -e mytest -a -d mytest; echo $? # exists and is directory
1
$ test -e mytest -o -d mytest; echo $? # exists or is directory
0
square brackets do the test command, check man test

$ if [-e mytest]; then echo "exists"; fi
exists
$ if [5 -gt 4]; then echo "definitely"; fi
definitely

pavel.fibich@prf.jcu.cz Be in shell control structures 55 / 137

test command with wildcards

For pattern matching and strings we can use [[]]
$ COMP="Faculty of Science"
$ if [[$COMP = F*]]; then echo "Start by F"; fi
Start by F
$ if [[$COMP = [ABC]*]]; then echo "Start by A, B, or C

"; fi
$ if [[$COMP = +(F)*Science]]; then echo "More special"

; fi
More special
$

+ is used for one or more characters (recall * is for zero or more). You
can use also [:alpha:], [:digit:], [:lower:], ..
$ if [[$COMP = [[:alpha:]]*]]; then echo "Contains only

alphabetics"; fi
Contains only alphabetic

pavel.fibich@prf.jcu.cz Be in shell control structures 56 / 137

Conditions

To combine conditions you can you also notation
$ if [[30 -gt $age && $age < 60]]; then ..
$ if ((30 < age && age < 60)); then ..

Exercise
write if command that checks that actual month is March
write if command that checks if the last command was
successful (remember $?)
write if command that checks if value $VAR contains value $IN
write script that cheks if in the current folder is more files than
number you give as the first argument of the script
try to debug your script (e.g. by -x option to bash)
read further lesson’s slides

pavel.fibich@prf.jcu.cz Be in shell control structures 57 / 137

Conditions - solutions

Exercise - solutions
write if command that checks that actual month is March
if [‘date +"%m"‘ -eq 3]; then echo "Nice March";

else echo "Not March"; fi

write if command that checks if the last command was successful
if [$? -eq 0]; then echo "Fine"; else echo "Not

fine"; fi

write if command that checks if value $VAR contains value $IN
if [[$VAR = *$IN*]]; then echo "In"; else echo "

Not in"; fi

write script that cheks if in the current folder is more files than ...
if test $(ls | wc -l) -gt $1; then
echo "There is more than $1 files"

else echo "There is not more than $1 files"
fi

pavel.fibich@prf.jcu.cz Be in shell control structures 58 / 137

Warm up Exercise

Exercise
write command that sets variable to the number of lines of some
file minus 1 and divided by 2
write script that count all txt files in the folder given as 1st
argument and store the value in the variable TXT (use export to
make variable visible)
write script that cheks if in the current folder is more files than
number you give as 1st argument of the script

pavel.fibich@prf.jcu.cz Be in shell control structures 59 / 137

loops

loops

pavel.fibich@prf.jcu.cz Be in shell control structures 60 / 137

loops

Several commands can repeat actions:
while condition; do ... done, for ... in ... ; do ... done
$ ls -l | while read FILE; do echo $FILE; done
$ for i in ‘seq 1 10‘; do echo $i; done
$ while read -p "Company: " COMPANY; do
if [-f "orders_$COMPANY.txt"]; then

echo "There is order from this company."
else

echo "There are no orders from this company!"
fi

done

Use CTRL+c to get out from the loop.

Exercise
Improve the script to react on quit, e.g. by break command, jump
out of the loop. Add printing of the order, if there is any. Write
command that will print file names in the folder without .* suffix.

pavel.fibich@prf.jcu.cz Be in shell control structures 61 / 137

loops

for reads sequence of values into a variable and repeats the
enclosed commands one for each value
$ for file in *.csv; do wc -l $file; done # lines of csvs
$ for i in $(ls); do echo "file: $i"; done
$ for FILE_PREF in order invoice purchase_order; do
if test -f "$FILE_PREF""_vendor.txt"; then

printf "%s\n" "There is a $FILE_PREF file for vendor"
fi

done

Embedded let
$ for ((CO=5; CO<50; CO=CO+5)); do # c style
printf "The counter is %d\n" $CO

done

Exercise
Use for loop to create file with numbers from 1 to 999, all in one line
and each on separate line.

pavel.fibich@prf.jcu.cz Be in shell control structures 62 / 137

solutions

Exercise - solutions
Write command that will print file names in the folder without .*
suffix.
ls | while read FILE; do echo ${FILE%%.*}; done

Use for loop to create file with numbers from 1 to 999 ...
i=1; while test $i -lt 1000; do
echo $i >> 999file; i=$((i+1)); done

pavel.fibich@prf.jcu.cz Be in shell control structures 63 / 137

functions and aliases

For faster execution, we can prepare functions to do the serie of
commands.
$ function whoson() { date; echo "Hi $1, currtely logged

in users"; who; }
$ whoson Pavel # run function with parameter
...

We can also create aliases for the commands
$ ll
bash: ll: command not found
$ alias ll=’ls -l’ # create alias ll
$ ll
...
$ alias # list of all aliases
alias ll=’ls -l’
alias ls=’ls --color=auto’

To load aliases or functions automaticaly, we must store them in the
.bash... files (e.g. in .bashrc).

pavel.fibich@prf.jcu.cz Be in shell control structures 64 / 137

getopts script options

For single minus options we can use getopts, but more standart is to
handle also double minus options by getopt.
$ cat ./opt.sh
while getopts ":sp:" o; do
case "${o}" in
s) s="set";;
p) p=${OPTARG};;
*) echo "usage: ./opt.sh -s -p arg";;

esac
done
if [-n "$s"]; then echo "s = ${s}"; fi
echo "p = ${p}"
$./opt.sh -s -p 4
s = set
p = 4

First argument of getopts defines if option has argument by adding :

pavel.fibich@prf.jcu.cz Be in shell control structures 65 / 137

Combining commands

Grouping of commands by curly brackets (current shell)
$ MX=4
$ { sleep 5; MX=2; echo "Slept for 5s"; }
Slept for 5s
$ echo $MX
2

by round brackets (new shell)
(sleep 5; MX=3; echo "Slept for 5s")
Slept for 5s
$ echo $MX
2

Conditional sequences
$ cat file && wc -l file # run wc if cat succeed
cat: file: No such file or directory
$ cat file || wc -l file # run wc even if cat not succeed
cat: file: No such file or directory
wc: file: No such file or directory

pavel.fibich@prf.jcu.cz Be in shell control structures 66 / 137

jobs and signals *

Running jobs can be watched by top command. If you plan to run
command and then log out, it is good to run it by nohup
$ nohup myscript &
[1] 16858 # PID

By pressing CTRL+c we are sending signal SIGTERM. We can
manually send also other signals
$ {sleep 60; echo "DONE";} &
[1] 16863
$ kill -SIGSTOP 16863
[1]+ Stopped { sleep 60; echo "DONE"; }
$ kill -SIGCONT 16863
DONE

We can adjust our script to be able to react to the signals (e.g. storing
results when job is killed). Write trap at the beginning of the script
trap "cp outputs /storage/" TERM EXIT

will do cp if signal for cancel or exit is catched.

pavel.fibich@prf.jcu.cz Be in shell control structures 67 / 137

finding files

To find a file, you have many options
recursive ls and combine with string matching (see man to ls)
more powerful is find
$ find . -name "*.txt" # all files .txt from the current dir
$ find . -type d -or -name "*.txt" # ... or directories
$ find . ! -name "*.txt" # files not having suffix *.txt

You can check file size (-size), time of modification (mtime), ...
and run some command on the found files
$ find . -name "*.txt" -exec cat {} \;
...
$ find . -name "*.txt" -ls # predefined command
...

xargs takes input and executes your chosen command on it, so we
can avoid loops sometimes. It is often use instead of -exec in find.
$ echo Hello | xargs echo # simple ilustration
Hello
$ find . -name "*.bak" -type f -print | xargs /bin/rm

pavel.fibich@prf.jcu.cz Be in shell control structures 68 / 137

Exercise on loops and signals

Exercise
Write a script that for the file (first script argument) print the
second part of the file (i.e. for file with 10 lines, it prints the last 5).
Create a script to print every x line of the file (e.g. use variable in
loop).
Add check that the argument is the file and have more than x
(second argument) lines. If not, print corresponding error
message.
Run 100 sleep 30 commands in background and store their
PIDS in file (eg. by ps).
Read the file and let all sleep commands to suspend (for each
line get PID as substring of variable where is stored whole line,
e.g. ${MYV:9:8}).
Write general function for it (file with PIDS and signal to be send
as two arguments of function).

pavel.fibich@prf.jcu.cz Be in shell control structures 69 / 137

Exercise solutions

Exercise
Write a script that for the file (first script argument) print
NLINES=$(cat $1 | wc -l); NLI=$((NLINES/2))
tail -n $NLI $1

Add checks that the argument is the file and have more than x
(second argument) lines. If not, print corresponding error
message.
Create a script to print every x line of the file (e.g. use variable in
loop).
Run 100 sleep 30 commands in background and store their
PIDS in file (eg. by ps).
Read the file and let all sleep commands to suspend (for each
line get PID as substring of variable where is stored whole line,
e.g. ${MYV:9:8}).
Write general function for it (file with PIDS and signal to be send
as two arguments of function).pavel.fibich@prf.jcu.cz Be in shell control structures 70 / 137

Homework 1 - ppsaver

Homework1
Write script that will change all wired interpreters of python or perl
in the folder.
In shortcut, just change in all files 1st line (if there is such line)
#!/bin/bin/perl
#!/bin/bin/python

change for (respectively)
#!/usr/bin/env perl
#!/usr/bin/env python

Script will take 2 or 3 arguments: 1st is folder, where it will be
recursivelly looking for files, 2nd is interpreted name (only perl or
python will be specified) and if 3rd argument will be make, than
changes will be applied, if 3rd is not specified, than just print file
names with wired interpreter.

pavel.fibich@prf.jcu.cz Be in shell control structures 71 / 137

Homework 1 - ppsaver

Homework1
Script will go through all files in the folder (1st arg) and his
subfolder (and so on), check if files contain interpreter (2nd arg)
and according 3rd arg will make change in the file or just print the
file name.
Example run: no 3rd arg, just list of files with wired header
$./ppsaver ttest/ perl
FILE: ttest/myfile1
FILE: ttest/ttest2/myfile1

Example run: changes to be done
$./ppsaver ttest/ perl make
FILE: ttest/myfile1
MODIFIED!
FILE: ttest/ttest2/myfile2
MODIFIED!

pavel.fibich@prf.jcu.cz Be in shell control structures 72 / 137

Homework 1 - ppsaver

Homework1
Check the number of arguments.
$./ppsaver ttest/
Not enough args: ./ppsaver FOLDER INTERPRETER {make}

Leave all files without wired interpreter on 1st line untouched.
Follow exact format of the input and output.
Read the homework and test it again before sending it.
Homework is individual, not team, work!
Send me the solution (script name according your surname:
ppsaver.SURNAME) by email before 18:00 28 March
Score: 0..10

By not presenting at least some efort, you can not go for the exam.
Final score from the course is mostly dependent on the scores of
homeworks.

pavel.fibich@prf.jcu.cz Be in shell control structures 73 / 137

text files

text files

pavel.fibich@prf.jcu.cz Be in shell control structures 74 / 137

Text files manipulations

To get file from the web, you can easily use wget or curl
$ wget http://botanika.prf.jcu.cz/fibich/ideff.csv
...

We often work with csv or somehow delimited files. It is easy to exact
columns from them.
to get first two lines from 2. and 4. column (-d defines delimiter)
$ cut -d’,’ -f2,4 ideff.csv | head -n 2 # cut can N-,N-M,-M
sp,RYO
Plantago,1.11

We can also easily paste files together
$ cut -d’,’ -f4,1,3 ideff.csv > file1
$ cut -d’,’ -f4,1,5 ideff.csv > file2
$ paste -d’|’ file1 file2 # paste files together
exp,IDKirw,RYO|exp,RYO,Sel
GE1,3.93,1.11|GE1,1.11,0.2
GE1,2.98,0.67|GE1,0.67,0.32
...

pavel.fibich@prf.jcu.cz Be in shell text files 75 / 137

Text files manipulations

To continue in pasting, we can also join files, its options define on
which field to match files together
$ join -1 3 -2 2 -t, file1 file2
RYO,exp,IDKirw,exp,Sel
1.11,GE1,3.93,GE1,0.2
0.67,GE1,2.98,GE1,0.32
...

Beside printing unique lines in the file (by uniq command), we can
also print common lines for two files (by comm command).

Exercise
For ideff.csv (look at the 1st lesson for help)

get unique names from the first column
sort reversarily by 3rd column
append line numbers (check man of cat)

pavel.fibich@prf.jcu.cz Be in shell text files 76 / 137

tr as translate

tr works on characters and can
delete (-d)
$ printf "%s\n" "12 Files can be found in 54

directories" | tr -d ’1-9’
Files can be found in directories # remove numbers
$ printf "%s\n" "My BIG files are ..." | tr -d ’[:

upper:]’
y files are ... # remove upper cases

substitute
$ printf "%s\n" "My BIG files are ..." | tr ’MB’ ’mb’
my bIG files are ...
$ cat ideff.csv | tr ’[:upper:]’ ’[:lower:]’
exp,sp,idkirw,ryo,sel,compl,net,oi
ge1,plantago,3.93,1.11,0.2,0.8,1,1.06
...

pavel.fibich@prf.jcu.cz Be in shell text files 77 / 137

Regular expressions

Regular expression (regex) describes a set of possible input strings;
are built-in vi, emacs, sed, awk, perl, python, ... various syntax!

if string is substring of given string or text file
. (dot) matches any character (use backslash for regular dot)
[] is for character class, eg. [abc] maches any of character abc,
[Bb]ye matches bey and Bye, we can use ranges [1-9],
[a-e], [1-9a-e]
negation by caret [ˆ eo]

named classes [a-zA-Z] for [[:alpha:]], [a-zA-Z0-9] for
[[:alphanum:]], [45a-z] for [45[:lower:]]
anchors match beginning ˆ or end $
* means zero or more repetitions (ya*y matches yay, yaaaay, ...),
{n} n occurences, {n,} n or more, {n,m} n but max m (.0, same
as .*, a2,3 matches aaa and aaaa)
brackets: abc* matches ab, abc, abcc, .. (ab)2,3 matches abab,
ababab

pavel.fibich@prf.jcu.cz Be in shell regex 78 / 137

Searching for lines

grep is a global regular expression print, eg.
$ grep SE ideff.csv # print lines with SE string
SE,ss,20327.8,1.15,2157.34,1721.18,3878.52,-0.29
...
$ grep "ˆG" ideff.csv # print lines starting with G, (caret)
GE1,Plantago,3.93,1.11,0.2,0.8,1,1.06
$ grep "2$" ideff.csv # lines ending with 2
GE2,Holcus,3.773,2.52,0.97,0.265790,1.231985,-0.053142
$ grep -v Holcus ideff.csv # print lines do not have Holcus

exp,sp,IDKirw,RYO,Sel,Compl,Net,OI
...
$ grep "Holcus\|Briza" ideff.csv # lines having Holcus or Briza
GE2,Holcus,3.773,2.52,0.97,0.265790,1.231985,-0.053142

Exercise
Write command that find all occurences of the string Holcus (case
insensitive) in all .csv files in the current directory.

pavel.fibich@prf.jcu.cz Be in shell regex 79 / 137

sed as stream editor - substitute

or Stream oriented non-interactive text EDitor. sed is filter, do not
modify original file, but std. output. Sed is fast and concise.
Answer for: How to substitute ’Prunella’ for ’allheal’ or numbers in the
file? How to delete first line?
$ cat ideff.csv | grep Prunella
GE1,Prunella,2.98,0.67,0.32,0.52,0.84,0.99
GE2,Prunella,1.526,0.62,0.83,0.295264,1.125914,-0.028994
$ sed "s/Prunella/allheal/g" ideff.csv | grep allheal
GE1,allheal,2.98,0.67,0.32,0.52,0.84,0.99
GE2,allheal,1.526,0.62,0.83,0.295264,1.125914,-0.028994
$ sed "s/[[:digit:]]/_/g" ideff.csv | tail
GE_,Holcus,_.___,_.__,_.__,_.______,_.______,-_.______

Pattern have often 3 parts:
command: substitute s (5 s,5!s, 5,10s), append a, insert i,
delete d (1d, 12̃d), p print (1,5p), ...
what/for what to change
range on line g - all occurances on line; without it only the first

pavel.fibich@prf.jcu.cz Be in shell sed 80 / 137

sed as stream editor - print,append

How to delete first line or print exact lines?
$ cat ideff.csv | sed ’1d’
GE1,Plantago,3.93,1.11,0.2,0.8,1,1.06
...
$ sed ’/ˆ$/d’ ideff.csv # delete blank lines, ˆ beginning, $ end of line
...
$ sed -n ’5,6p’ ideff.csv # print 5-6. line, -n print only lines with p
GE1,Agrostis,4.55,1.13,0.13,0.66,0.78,0.99
GE2,Holcus,3.773,2.52,0.97,0.265790,1.231985,-0.053142
delete lines in matched range
$ sed ’/Agrostis/,/Lychnis/d’ ideff.csv
...

Append line before the matched lines
$ sed "/Plantago/i NEWONE:" ideff.csv
exp,sp,IDKirw,RYO,Sel,Compl,Net,OI
NEWONE:
GE1,Plantago,3.93,1.11,0.2,0.8,1,1.06
...

pavel.fibich@prf.jcu.cz Be in shell sed 81 / 137

sed as stream editor - complex

To combine more command use -e
$ sed -e ’1,2s/[1-9]/x/g’ -e ’1d’ ideff.csv
GEx,Plantago,x.xx,x.xx,0.x,0.x,x,x.0x
GE1,Prunella,2.98,0.67,0.32,0.52,0.84,0.99

More complex matching can be done by specifying patterns in () and
later used by backslach and order of ()
print non digit start of line before , matched by () pasted by backslash 1
$ sed ’s/\([ˆ1-9]*\),\(.*\)/\1/’ ideff.csv
exp,sp,IDKirw,RYO,Sel,Compl,Net
GE1,Plantago
...
switch 1. and 2. column divided by ,
$ sed ’s/\(.*\),\(.*\)/\2,\1/’ ideff.csv
OI,exp,sp,IDKirw,RYO,Sel,Compl,Net
1.06,GE1,Plantago,3.93,1.11,0.2,0.8,1

Drawbacks: do not remember text from one line to another, no facilities
to manipulate numbers, cumbersome syntax

pavel.fibich@prf.jcu.cz Be in shell sed 82 / 137

Exercise

Run and get ideff.csv (beginning of this lesson)
$ mkdir textfiles; cd textfiles; touch fil{k..o}
$ touch fil{0..17}.log; touch {20..25}; touch a.x{a..e}

Exercise
print all lines with negative numbers from ideff.csv

print all files having: (1) name from 4 characters (2) number
together with alphabetic character in the name
create new ideffP.csv, removing - mark from the original file
print all files in the current folder with .* suffixes in upper style
create new ideffL.csv by changing the first column of
ideff.csv in lower style
print all files with . in name and change . for DOT (use backslash)
write command that will find text in all files in the current folder
except of files that end with .log

pavel.fibich@prf.jcu.cz Be in shell sed 83 / 137

Exercise solutions

Exercise
print all lines with negative numbers from ideff.csv
grep - ideff.csv

print all files having: (1) name from 4 characters (2) number ...
ls ????; ls | grep ’ˆ.\{4\}$’ # same result
ls | grep "[[:alpha:]][[:digit:]]"

create new ideffP.csv, removing - mark from the original file
sed ’s/-//g’ ideff.csv

print all files in the current folder with .* suffixes in upper style

pavel.fibich@prf.jcu.cz Be in shell sed 84 / 137

Exercise solutions

Exercise
create new ideffL.csv by changing the first column of ...

print all files having . (dot) in name and change . in DOT (use
backslash)
ls | sed ’s/\./DOT/g’

write command that will find text in all files in the current folder ...

pavel.fibich@prf.jcu.cz Be in shell sed 85 / 137

Homework 2

Download
http://botanika.prf.jcu.cz/fibich/bash/home2.tar.gz,
unpack (e.g. tar -xvf home2.tar.gz). Write a script that if you
run it inside home1 folder, will print (instead of ... there are values or
lines)
$ createSum.sh # print folders and number of subfolders
SE 6
GE1 6
GE2 15
$ createSum.sh -c # compound files
SE,plpru,-0.9117911229,-0.4025109039,...,-0.4606028115,0
SE,plach,0.3984090416,0.0980536463,...,-0.4888029837,1
...
GE1,ssws,1.4582010773,0.4898979486,...,1.1983342482,1
...

pavel.fibich@prf.jcu.cz Be in shell sed 86 / 137

http://botanika.prf.jcu.cz/fibich/bash/home2.tar.gz

Homework 2 - details

$ createSum.sh -c -p : # compound files and specify separator
SE:plpru:-0.9117911229:-0.4025109039:...:-0.4606028115:0
SE:plach:0.3984090416:0.0980536463:...:-0.4888029837:1
...
GE1:ssws:1.4582010773:0.4898979486:...:1.1983342482:1
...
$ createSum.sh -h # will print short help

pavel.fibich@prf.jcu.cz Be in shell sed 87 / 137

Homework 2 - details

Homework1
Script will create text on std. output based on files in folders in the
current folder.
It takes 1st folder as value for 1st column, 2nd folder (inside 1st
folder) as the second column and values inside 1st/2nd/data.csv
are as following columns.
User can specify 3 options: -h for short help, -c to compound
files, -p takes argument that is used as separator of columns
(eventhrough there are , in data.csv). Use getopts!
Homework is not team work, do it yourself.
Send me the solution (script name according your surname:
createSum.SURNAME) by email before 18:00 10 April
Shorter script better script!

pavel.fibich@prf.jcu.cz Be in shell sed 88 / 137

awk

awk

pavel.fibich@prf.jcu.cz Be in shell awk 89 / 137

awk

AWK is an interpreted programming language designed for text
processing and typically used as a data extraction and reporting tool. It
is a standard feature of most Unix-like operating systems.
$ awk -F, ’{print $2,$1}’ ideff.csv # print 2. and 1. column
sp exp
Plantago GE1
..
$ echo $PATH | awk -F: ’{print toupper($1)}’ # -F is field sep.
/USR/LOCAL/BIN
$ awk -F, ’BEGIN{print "HI"} {print $2,$1}’ ideff.csv
HI
sp exp
..

Basic structure of the script is in ”
BEGIN{ print "START" } # what is run before 1. line
{ print } # what is run for each line of the input

END { print "STOP" } # what is run after the last line

pavel.fibich@prf.jcu.cz Be in shell awk 90 / 137

awk over sed

awk pattern action language like sed (but convenient number
processing, conventional way of accesing fields, flexible printing,
built-in arithmetics and string functions). No variable declaration.
$ awk ’BEGIN{sum=0} {sum++} END{print sum}’ ideff.csv
15
$ awk ’{print $0}’ ideff.csv # the same as cat
...
$ awk -F, ’{print $3*$4}’ ideff.csv # multiply 3. and 4. column
...

Few built-in variables
FS (OFS) field separator (passed by -F option) and output separator
NF number of fields in the line (print $(NF-1) to print pre-last

column)
NR line number (print NR,$NF print last column with line numbers)

FILENAME, ARGC, ARGV ...

pavel.fibich@prf.jcu.cz Be in shell awk 91 / 137

awk - selection

awk ’searchPattern {commands}’

Easy conditional selection by comparison, computation or by string
$ awk -F, ’$3 > 3 {print $3}’ ideff.csv # 3. column bigger than 3
$ awk -F, ’log($3) > 3 {print $3}’ ideff.csv # log of 3. column
$ awk -F, ’$1 == "SE" {print $3}’ ideff.csv # column matching
$ awk -F, ’/ll/ {print $3}’ ideff.csv # string matching
$ awk -F, ’/1$/ {print $0}’ ideff.csv # lines end with 1
...

To combine conditions, use && or ||
$ awk -F, ’$3 > 3 && $2 > 1 {print $3}’ ideff.csv
...

Line can by selected by number of fields
$ awk -F, ’NF >3 {print $3}’ ideff.csv # more than columns
...

pavel.fibich@prf.jcu.cz Be in shell awk 92 / 137

awk - built-in

awk contains a number of built-in functions
string - length (length of string), substr(s,m,n) substring of s
from m-th position at most n characters, split(s,a,d) place
elements of s delimited by d into array a, sub, toupper,
tolower, printf print formating in c style
arithmetics - sin, cos, atan, int, exp, log, rand, sqrt, ...
special - system (executes a linux command,
system("clear")), exit (stop and go to END)

To get environmental variable, ENVIRON["VARNAME"] is used.
$ awk ’BEGIN {print ENVIRON["PATH"]}’ ideff.csv
/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

pavel.fibich@prf.jcu.cz Be in shell awk 93 / 137

awk - built-in

Also control of the flow by if-else, while and for loops.
... END { if (n>0) print n} ...
... {while (i <= $3) { printf("%f",$1*$2+i); i = i +1} }

Arrays subscripts can have any value (also associative arrays),
elements are not declared.
$ awk -F, ’{line[NR]=$0} END { for(i=NR;i>0;i=i-1) print(

line[i])}’ ideff.csv
... # print file clockwisely
for loop for associative array
for (v in array) { print array[v] }

Own functions can be defined too
$ awk -F, ’function foo() { a = exp($4); printf("%f\n",a)

} { foo() }’ ideff.csv
...

pavel.fibich@prf.jcu.cz Be in shell awk 94 / 137

awk script

We can have awk script
$ cat awk.a
#! /usr/bin/awk -f
{ print $1}
$ chmod u+x awk.a
$./awk.a ideff.csv

Awk can be easily combined with other commands
$ ls -l | awk ’{print $5}’ # list of file sizes

First version released 1977 by Aho-Weinberg-Kernighan, actual verion
is often called as new awk. Beside awk there is GNU awk, often run by
gawk that is also ported to many OSs.

pavel.fibich@prf.jcu.cz Be in shell awk 95 / 137

awk - exercise

Download
http://botanika.prf.jcu.cz/fibich/bash/inteff.csv

Exercise on awk

get only number of lines from the command wc -l inteff.csv

print second column from inteff.csv having ”pru” inside
use inteff.csv to print file in form
exp=GE1,mix=plpru,int=5.74,Sel=0.35
exp=GE1,mix=plach,int=3.5,Sel=0.29

print number and length of each line in given file
print every third line of the file, later get value that determines
which line to print from environmental variables
print sum, max and mean of 3. and 5. column of inteff.csv
count frequencies of values in the first column of inteff.csv
write a command to print the columns in a text file in reverse order

pavel.fibich@prf.jcu.cz Be in shell awk 96 / 137

http://botanika.prf.jcu.cz/fibich/bash/inteff.csv

big exercise 1

big exercise 1

pavel.fibich@prf.jcu.cz Be in shell big exercise 1 97 / 137

Exercise

Exercise
Write command or script that

print the content of variable PATH on more lines, change : by new
line
counts characters of the current user name and number of user’s
processes
for variable i having content: some aplhas, than some digits and
than some alphas, print just last alphas, e.g. i=abc76hell print
hell, i=hh3five print five
count sum of all lines of all files in the current directory
print file names and their owners in the current folder, nothing else
print only the shortest and the longest file names in the current
directory

pavel.fibich@prf.jcu.cz Be in shell big exercise 1 98 / 137

Exercise

Exercise
print all files having ’a’ as the second character
write command that will create directories, sub-directories,
sub-sub-dir... according variable MFO, e.g. for
MFO=first second third, will create three directories
first/second/third
write command that creates MFO variable from the current
directory
create function mkcd that creates and goes into directory (1. arg.)
write script having 3 arguments: in the file (name as the 1.
argument), change/substitute string (2. argument) for the string (3.
argument)
write script having 2 arguments: 1. is file name (f) and 2. is
number (n), it creates two files f begin and f tail, that
contains first n lines and the rest lines of the file f, respectively

pavel.fibich@prf.jcu.cz Be in shell big exercise 1 99 / 137

GNUplot

GNUplot

pavel.fibich@prf.jcu.cz Be in shell GNUplot 100 / 137

GNUplot

GNUplot is command-line interactive plotting program available for
many OSs, see http://www.gnuplot.info. To run and quit
$ gnuplot
G N U P L O T
Version 4.6 patchlevel 0 last modified 2012-03-04
...
gnuplot> quit

for help with commands, use help command
commands can be shortened (eg. p for plot)
commands are separated by ;
comments are done by #
shell commands start with ! (eg. ! ls)
filenames have to be enclosed by quotes
we can prepare scripts, sequence of gnuplot commands
$ gnuplot gpscript # run gnuplot script
...
gnuplot> load ’gpscript’ # run script from gnuplot

pavel.fibich@prf.jcu.cz Be in shell GNUplot 101 / 137

http://www.gnuplot.info

GNUplot output device

gnuplot> set terminal # list of output devices
Available terminal types:

cairolatex LaTeX picture environment using
graphicx package and Cairo backend
canvas HTML Canvas object

cgm Computer Graphics Metafile
...
$ cat gpscript # list of gnuplot script
set terminal png
p sin(x)/x
$ gnuplot gpscript > obr.png # run script and store figure

After start, if you see Terminal type set to ’unknown’, than install
gnuplot-x11 package to see figures directly (not exported into files).
$ gnuplot
...
gnuplot> p sin(x) # print graph of sin(x)
gnuplot> test # print test figure for terminal

pavel.fibich@prf.jcu.cz Be in shell GNUplot 102 / 137

GNUplot test device

pavel.fibich@prf.jcu.cz Be in shell GNUplot 103 / 137

GNUplot formatting options

place or hide key
set key top center
set no key

set a title
set title "the title"

axis labels
set xlabel "pH"
set ylabel "a"

plot an arrow set arrow from 0.5,0 to 0.5,0

define a label set label "b point" at 0.5,0

border set border lw 3

ticks set ytics 0.5, set xtics 0.1

linewidth (lw), pointsize (ps), line or point type lt, pt

After changing of settings, it is often necessary to run replot rep.
pavel.fibich@prf.jcu.cz Be in shell GNUplot 104 / 137

GNUplot input files

gnuplot can read data from files
which changes are done by following command?
$ sed -e ’1d’ -e ’s/,/ /g’ ideff.csv >ideff2.csv
gnuplot> plot ’ideff2.csv’ using 4:8 # 4. and 8. col scatter plot
short commands with point type
gnuplot> p ’ideff2.csv’ u 4:8 pt 8
multiple data series
gnuplot> p ’ideff2.csv’ u 4:7 pt 8, ’ideff2.csv’ u 4:6
gnuplot> p ’ideff2.csv’ u 4:($7/5) # do math on column

Columns are indexed from $1 and $0 is for running index.
To change scale, zoom or style

[un]set logscale [xy]

set xrange [0:10]; set yrange [*:*] y is set
automatically
multiplot options by set multiplot

You can specify column separator set datafile separator ”; ”
and also presence of headline set key autotitle columnhead.

pavel.fibich@prf.jcu.cz Be in shell GNUplot 105 / 137

GNUplot built-in

Many built-in function for
math - abs, sin, log, exp, round, floor, pi, ..
strings - gprintf, sprintf, strlen, substr
other - system (calling shell command), column (get column),
value (value of variable), rand (random value), fitting of functions,
reset settings.

and also operators. User can easily prepare own variable or functions
gnuplot> a = floor(tan(pi/2 - 0.1))
gnuplot> print a
gnuplot> sinc(x) = sin(pi*x)/(pi*x)
gnuplot> p sinc(x)/x
gnuplot> min(a,b) = (a < b) ? a : b

Nice demo files at http://gnuplot.sourceforge.net/
screenshots/index.html#demos

pavel.fibich@prf.jcu.cz Be in shell GNUplot 106 / 137

http://gnuplot.sourceforge.net/screenshots/index.html#demos
http://gnuplot.sourceforge.net/screenshots/index.html#demos

GNUplot example 1

$ wget http://botanika.prf.jcu.cz/fibich/bash/using.dat
$ less using.dat
$ gnuplot

We will plot 4-6. column (y-axis) based on 3. column (x-axis) by
impulses, points and lines.
gnuplot> plot ’using.dat’ using 3:4 title "Logged in"

with impulses,\
’using.dat’ using 3:5 t "Load average" with points,\
’using.dat’ using 3:6 t "%CPU used" with lines

To set title, move the legend and xlab, you must call before the plot
gnuplot> set title "Computer load"
gnuplot> set key below
gnuplot> set xlab "Days"

To change the color and point size and type use
’using.dat’ using 3:5 t "Load average" with points pt 3

ps 4 lc rgb "cyan",

pavel.fibich@prf.jcu.cz Be in shell GNUplot 107 / 137

GNUplot exercise

Exercise
write function that will get data for specified experiment from the
file ideff.csv, argument of the function will be the name of the
experiment (1. column)
plot dependence of 6. col on 5. col (u 5:6) for GE1 and GE2 in
one figure
write script (or function) that will have 1 argument (filename),
script will run gnuplot, that will print scatter plot of the first and
second column into some graphical file (eg. add png suffix for the
input filename)
add title to the figure according to the given filename
use boxplot to differentiate values of the fifth column of GE1 and
GE2
gnuplot> set style data boxplot # pre-set the data style

add xlab according the experiment and ylab
pavel.fibich@prf.jcu.cz Be in shell GNUplot 108 / 137

R

R

pavel.fibich@prf.jcu.cz Be in shell R 109 / 137

R introduction

R is ’GNU S’, a freely available language and environment for
statistical computing and graphics which provides a wide variety of
statistical and graphical techniques: linear and nonlinear modelling,
statistical tests, time series analysis, classification, clustering, etc. See
http://cran.r-project.org/.
To run and quite R
$ R
R version 3.0.3 (2014-03-06) -- "Warm Puppy"
Copyright (C) 2014 The R Foundation for Statistical

Computing
Platform: x86_64-pc-linux-gnu (64-bit)
...
> plot(1:10) # plot number from 1 to 10
> q() # quit R
Save workspace image? [y/n/c]: n
$

pavel.fibich@prf.jcu.cz Be in shell R 110 / 137

http://cran.r-project.org/

R introduction

Quite intuitive environment, in examples
> a=4+6 # assign the value to variable
> a # print variable
[1] 10
> 4:10 # create sequence
[1] 4 5 6 7 8 9 10
> a+4:10 # sum value with sequence
[1] 14 15 16 17 18 19 20
> ls() # list of current variables
[1] "a"
> rm(a) # removing the variable
> getwd() # get current directory, setwd() set it
[1] "/home/pvl/Documents/prf.jcu/bash"
> sqrt(5) # square root of 5
[1] 2.236068
> seq(3,12,1.2) # sequence defined by step
[1] 3.0 4.2 5.4 6.6 7.8 9.0 10.2 11.4
> ? seq # get help for the function

pavel.fibich@prf.jcu.cz Be in shell R 111 / 137

R why

Why to know R?
currently the most widespread statistical software
great graphical features
thousands of packages (addons with specialized functions) mostly
for everything
many tools for data manipulation (grep, merge, split,
aggregate, apply, uniq, sort, gsub...)
power of programming language (variables, conditions, loops,
function, classes, regex, easy math, ...)
binaries for Mac, Windows and Linux
it is free

Often connected with some integrated development environment
(IDE), e.g. R studio (https://www.rstudio.com/)

pavel.fibich@prf.jcu.cz Be in shell R 112 / 137

https://www.rstudio.com/

R start

Instead of interactive mode, R can be run with script (see man R)
$ cat script.r # script with R code
sqrt(2:20)
$ R -q --vanilla < script.r > out.r # run script
$ cat out.r # see the output
> sqrt(2:20)
[1] 1.414214 1.732051 2.000000 2.236068 2.449490

2.645751 2.828427 3.000000
...

or we can specify interpreter in the script
$ cat run.R # R script with interpreter
#!/usr/bin/Rscript
sqrt(2:20)
$./run.R # can be run directly in the terminal
[1] 1.414214 1.732051 2.000000 2.236068 2.449490

2.645751 2.828427 3.000000
...

pavel.fibich@prf.jcu.cz Be in shell R 113 / 137

R start

R often load and store current environment in the file .RData (there
are stored current variables, function, settings, ...), but it depends
which options where specified during the run of R.

--no-environ do not load .RData

--no-save do not save .RData

--vanilla is shortcut for --no-save, --no-restore,
--no-site-file, --no-init-file and --no-environ

In the interactive mode after quit (q()), R is asking if to save
environment in to .RData. Image can be saved during the sesstion
too (save.image()).

pavel.fibich@prf.jcu.cz Be in shell R 114 / 137

R packages

Packages are often installed in the personal library in the home
directory /home/$USERNAME/R.
> search() # what is currently loaded
> library() # see all installed packages

Sometimes it is usefull to tell R where to install and where to get
packages (e.g. for package called fork)
> install.packages("fork", lib="/home/pvl/Documents/prf.

jcu/bash/r")
> library("fork", lib="/home/pvl/Documents/prf.jcu/bash/r

")

To install already downloaded package you can use
$ wget http://cran.r-project.org/src/contrib/fork_1.2.4.

tar.gz
$ R CMD INSTALL fork_1.2.4.tar.gz

Many of packages are in repositories of OSs.

pavel.fibich@prf.jcu.cz Be in shell R 115 / 137

R data

To get data in, or store them in files, there are read.* and write.*
functions (press TAB after dot to get the list of available function like in
terminal)
> read.
read.csv read.delim2 read.table read.csv2 read.delim ...
> write.
write.csv write.csv2 write.ftable write.table ...

To read csv from the homework 2, you can use
> sla = read.csv("sla.csv") # read csv file
> class(sla) # check the data type
[1] "data.frame"
> summary(sla) # see the summary

species plot LEAFAREA_mm2
FestRubr : 11 Min. : 1.00 Min. : 52.37
CirsPalu : 9 1st Qu.: 6.00 1st Qu.: 793.94
AgroCani : 8 Median :12.00 Median : 1508.18
GaliUlig : 8 Mean :12.53 Mean : 2252.80

...
pavel.fibich@prf.jcu.cz Be in shell R 116 / 137

R data out

You can easily store your results of data manipulations
> sla2 = sla # copy of variable
to work with column you often use $ after variable name, then col. name
> sla2$LEAFAREA_mm2 = log(sla2$LEAFAREA_mm2 + 1)
> summary(sla2) # see the summary

species plot LEAFAREA_mm2
FestRubr : 11 Min. : 1.00 Min. :3.977
CirsPalu : 9 1st Qu.: 6.00 1st Qu.:6.678
AgroCani : 8 Median :12.00 Median :7.319
GaliUlig : 8 Mean :12.53 Mean :7.284

...

and save it into file
to write csv without rownames and quoting the text
> write.csv(sla2,"sla2.csv",row.names=FALSE,quote=FALSE)
in write.table you can specify delimiter
> write.table(sla2,"sla2a.csv",row.names=FALSE, quote=

FALSE,sep=":")

pavel.fibich@prf.jcu.cz Be in shell R 117 / 137

R graphics

R terminal often open R graphic device when you plot, but you can
easily redirect output to the file
> ?pdf # or tiff, jpeg, png or bmp
> pdf("myout.pdf",width=4,height=4) # graphical device in inches
> plot(sin(1:20),type=’l’) # some plot command
> dev.off() # store the output into file

To easily create histogram you can use
> ?hist
> x<-rnorm(500) # 500 random numbers in Gaussian distribution, ?rnorm
> hist(x,col="gray") # histogram of x in gray color

5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

si
n(

1:
20

)

Histogram of x

x

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
20

40
60

80

pavel.fibich@prf.jcu.cz Be in shell R 118 / 137

R habits

Working in R, you should
check help pages (?command)
check data, e.g. for variable a
> summary(a)
> a # print content of variable
> dim(a) # size of variable, e.g. for tables (data.frame, matrix)
> length(a) # length of variable
> class(a) # type of variable

be careful with = (or <-) it can destroy your data in memory
prepare a script with sequence of command (e.g. in RStudio
where you can run script directly) for futher re-use
be careful what is loaded (e.g. use ls() to check which variables
were loaded from .RData)
use comments (after #) in your code

pavel.fibich@prf.jcu.cz Be in shell R 119 / 137

R

Exercise
plot histogram of LEAFAREA from the sla.csv (homework 2)
create boxplot (?boxplot) of column name RYO from
ideff.csv per column name exp (one figure with 3 boxes)
> boxplot(COLUMNforYaxis˜COLUMNforXaxis)

write script (or function) that will have 2 arguments (1. is
filename), script will run R, that will do histogram of the column (2.
argument), result will be saved into some graphical file (eg. add
pdf suffix for the input filename)
try to create the same plot as in GNUplot example based on
using.dat

pavel.fibich@prf.jcu.cz Be in shell R 120 / 137

R

Exercise - solution
write script (or function) that will have 2 arguments ...
$ cat rscr # R script version
#!/usr/bin/Rscript
args <- commandArgs(trailingOnly = TRUE)
mf=read.csv(args[1])
hist(mf[,args[2]])
$./rscr ideff.csv RYO
$ cat bscr # bash script version
echo "mf=read.csv(\"$1\")" > rfile
echo "pdf(\"our.pdf\")" >> rfile
echo "hist(mf\$$2)" >> rfile
echo "dev.off()" >> rfile
R --vanilla < rfile
$./bscr ideff.csv RYO

pavel.fibich@prf.jcu.cz Be in shell R 121 / 137

perl

Practical Extraction and Report Language alias perl is complete
language with many adjectives introduced by Larry Wall in 1987. Perl
uses syntax and concepts of awk, sed, C, bash, ... It stands on
thousands of third-party modules stored in the repository
Comprehesive Perl Achive Network (CPAN).
$ cat hello.pl # perl files often end with .pl
#!/usr/bin/perl
print "Hello World.\n";
$./hello.pl
Hello World.
$ perl hello.pl # other way
$ perl -d hello.pl # to use perldebug

For basic help and man pages use
$ perl --help
$ man perl

pavel.fibich@prf.jcu.cz Be in shell perl 122 / 137

perl characteristic

was meant to be a sort of shell-script on steroids (condense
syntax)
large library support
many OS and it is free
powerful text processing facilities without the arbitrary data-length
limits of many contemporary Unix commandline tools
actual version 5.18.2 (January 7 2014)

Programming language features
various variable types
OO
ability to package code in reusable modules
automatic memory management

pavel.fibich@prf.jcu.cz Be in shell perl 123 / 137

perl modules

The easy way to install perl module (library) is through CPAN (first run
often pre-set environment)
$ perl -MCPAN -e shell
cpan> install HTML::Template
cpan> quit

It often pre-set /̃.cpan/ and install libraries in the /̃perl5/.
Manual way of install package is done by getting code of module from
http://search.cpan.org/, e.g.
$ wget http://search.cpan.org/CPAN/authors/id/W/WO/WONKO/

HTML-Template-2.95.tar.gz
$ tar -xvf *.tar.gz
$ cd HTML-Template-2.95
$ perl Makefile.PL
$ make; make test
$ make install

You can also specify prefix where to install module (PREFIX=/folder
after Makefile.PL).

pavel.fibich@prf.jcu.cz Be in shell perl 124 / 137

http://search.cpan.org/

perl modules, example

To check if module is properly installed, you can by
$ export PERL5LIB=˜/perl5/lib/perl5 # export PATH to perl modules
$ perl -e "use HTML::Template" # run script that load module
if the output is no error, that in is ok

Many of packages are also in standard operating systems repositories
(e.g. apt-cache search perl MODULENAME).

Few examples
print first 3 columns
$ perl -pale ’$_="@F[0..2]"’ using.dat
change GE for GL in the file and store the original
$ perl -pi’.orig’ -e ’s/GE/GL/’ ideff.csv
$ cat b64.pl # script to decode argument from Base64 code
#!/usr/bin/perl
use MIME::Base64;
print decode_base64($ARGV[$1])

pavel.fibich@prf.jcu.cz Be in shell perl 125 / 137

python

Python is an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective approach
to object-oriented programming. Python’s elegant syntax and dynamic
typing, together with its interpreted nature, make it an ideal language
for scripting and rapid application development in many areas on most
platforms. See https://www.python.org.
$ cat hello.py # python sctipt often end with .py
#!/usr/bin/python
print ’Hello, world!’
$./hello.py # run python script
Hello, world!
$ python hello.py # other way of run
$ python -v hello.py # to debug what is loading during the execution

For basic help and man pages use
$ python --help
$ man python

pavel.fibich@prf.jcu.cz Be in shell python 126 / 137

https://www.python.org

python characteristic

elegant syntax
large library support
easy extendable by modules, even in C or C++
many OS and it is free
ideal for prototype development and other ad-hoc programming
tasks
actual version 3.4.0 (March 17 2014)

Programming language features
variety of basic variable types
OO, generator and list comprehensions
code in modules or packages
supports exceptions
automatic memory management

pavel.fibich@prf.jcu.cz Be in shell python 127 / 137

python packages

To install python package you can use easy ways by pip or
easy install
$ sudo python get-pip.py # you must download get-pip

previous command is run only once
$ pip search PACKAGENAME # to search package
$ sudo pip install bioinfo --process-dependency-links
install bioinfo package with dependencies

To chek if it was successful
$ python -c "import bioinfo;" # run script that load the package

The more manual way on already downloaded package
extract the package, get in directory
$ TOIN=/software/EXPECTED_FOLDER # install folder
$ python setup.py install --install-scripts=$TOIN/bin/ --

install-purelib=$TOIN/lib --install-lib=$TOIN/lib

Later, sometimes it is necessary to set PYTHONPATH and PATH
variables to $TOIN/lib and $TOIN/bin. Many modules are also in
OS repositories.

pavel.fibich@prf.jcu.cz Be in shell python 128 / 137

python examples

$ cat name.py # get input from user
#!/usr/bin/python
name = raw_input(’What is your name?\n’)
print ’Hi, %s.’ % name
$./name
What is your name?
pvl
Hi, pvl.
$ cat sum.py # sum of integer arguments
#!/usr/bin/python
import sys
try:

total = sum(int(arg) for arg in sys.argv[1:])
print ’sum =’, total

except ValueError:
print ’Please supply integer arguments’

$./sum.py 3 4 5
sum = 12

pavel.fibich@prf.jcu.cz Be in shell python 129 / 137

tools - google trends

pavel.fibich@prf.jcu.cz Be in shell python 130 / 137

Homework 3

Download
http://botanika.prf.jcu.cz/fibich/bash/sla.csv.

Write a script that have two arguments: filename (eg. sla.csv) and
non-negative number (eg. X).
Script will create one picture (whatever format pdf, jpg, tiff, png,
...), but having the same name as the first argument (e.g. it will
create sla.pdf), where one can observe difference of LEAFAREA
(the third column in the file) of different species (name from the
first column of the file).
For the plotting, we use ONLY species that have exactly X (2.
argument of the script) occurences in the file.
Send script (name according your surname: plotdif.SURNAME)
by email until 24:00 8.5.
For the example see following slide (it is not necessary to use
boxplot).

pavel.fibich@prf.jcu.cz Be in shell python 131 / 137

http://botanika.prf.jcu.cz/fibich/bash/sla.csv

Homework 3

$ plotdif.sh pic.csv 6 # create figure pic.pdf for species with exactly 6
occurences

pavel.fibich@prf.jcu.cz Be in shell python 132 / 137

big exercise 2

big exercise 2

pavel.fibich@prf.jcu.cz Be in shell big exercise 2 133 / 137

Big Exercise

Exercise
Write one line command that will

check if the number of files in the current directory is bigger than 5
set variable to the names of all files in the current directory
print current year, month and day, in format, eg. 2014 Jan Mon

create directories from 1 to 99, each with the file no containing
directory number plus 130
create variable evenNAME containing names of directories with
even number
create variable oddNO containing number of directories with odd
number
delete directories containing 0 in the name
for file test print number of lines having some upper case
character

pavel.fibich@prf.jcu.cz Be in shell big exercise 2 134 / 137

Big Exercise

Exercise
Write a function that will

make its only one argument executable file, add argument
checking
print the last and the first line of the file given as the argument
count lines that do not contain character specified as 1. argument
in the file specified as 2. argument
inform you if the seconds of the current time are more or less than
30
run date command only if there are more than 3 files in the
current folder
substitute string (first argument) for string (second argument) in
the file (third argument)
remove all white spaces from the argument (eg. output of date)

pavel.fibich@prf.jcu.cz Be in shell big exercise 2 135 / 137

Big Exercise

Exercise
Write a script or function that will

check if varible MYVAR is in range 10-30 and inform about it
create files myfileX, where X will be changed for all small case
letter in the alphabet
for aguments (always one arg.) like: xxfileRRTT34,
yzrrrru33, remove and print strings without 3-6. characters
create file every 3 seconds, name will be according to the seconds
of the current time
print sla.csv file with log transformed last column
print range of numbers between lines (1. and 2. argument) from
the file (3. arg)

pavel.fibich@prf.jcu.cz Be in shell big exercise 2 136 / 137

Big Exercise

Exercise – regex
write function that for aguments (there will be always only one
argument) like: abcd34g, a1, uhrfdsa355jj print lengths of
characters before digits (digits have various length) and after
digits; so 2 numbers appear as the output, e.g. 4 1, 1 0, 7 2

write function or script that for arguments (there will be always only
one argument) like 1232fa33a, 2errerew9bb, 11a9ere will
print difference of the numbers in the argument, e.g. 1199, -7, 2
$ mydiff 1232fa33a
1199
$

write function or script that for arguments (there will be always
only one argument) like 1232fa33a, 2errerew9bb, 11a9ere
will print only characters without digits at the beginning and also
print theirs length, e.g. fa33a 5, errerew9bb 10, a9ere 5

pavel.fibich@prf.jcu.cz Be in shell big exercise 2 137 / 137

	introduction
	shells
	linux start
	paths
	shell start and env
	user and sys
	editing
	more commands
	variables
	matching
	arithmetic
	script basics
	control structures
	text files
	regex
	sed
	awk
	big exercise 1
	GNUplot
	R
	perl
	python
	big exercise 2

